首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
An approximate model has been developed to improve our understanding of flow control at the exit of an extrusion die. This paper deals with the design of traditional die flow correctors used in flat-faced aluminum extrusion dies. The numerical model uses the finite-element method combined with techniques of mathematical programming. Analytical sensitivities have been developed from the discretized finite-element equations in order to compute the necessary derivatives during optimization. The model includes thermal effects, and the extruded material is assumed to be strain-rate and temperature dependent.  相似文献   

2.
The extrusion technology of plastic profile with metal insert is recently an advanced plastic processing method whose products keeps rising today for their excellent performance. However, the related fundamental research on polymer forming mechanism in the extrusion process of plastic profile with metal insert is lagging behind. With the development of computational fluid dynamics (CFD) theory, numerical method becomes an effective way to investigate such complex material forming problems as in the polymer extrusion process. In the present study, the mathematical model for three-dimensional non-isothermal viscous flow of the polymer melts obeying a Carreau model is developed based on the CFD theory. The Williams–Landel–Ferry equation is employed to involve the temperature dependence of material parameters. A decoupled numerical algorithm based on the penalty finite element method is conducted to predict the rheological behaviors of polymer melts within the complex flow channel. The streamline upwind/Petrov–Galerkin scheme is employed to improve the computational stability for the calculation of temperature field. Based on the theoretical model, the essential flow characteristics of polymer melts in the extrusion process of plastic profile with metal insert is investigated. The distributions of principal field variables like flow velocity, melt temperature, flow stress and pressure drop are predicted. The effects of die structure parameters including the intake angle and the distribution section length upon the melts flow patterns are further discussed. The variations of melt rheological properties versus different processing conditions like the volume flow rate and the metal insert moving velocity are also investigated. Some advice on practical processing operations of the extrusion process of plastic profile with metal insert is accordingly put forward based on the numerical results.  相似文献   

3.
Taguchi’s design of experiment and numerical simulation were applied in the optimization of an aluminum profile extrusion process. By means of HyperXtrude, the extrusion process was simulated and the effects of process parameters on the uniformity of metal flow and on the extrusion force were investigated with the signal to noise ratio and the analysis of variance. Through analysis, the optimum combination of process parameters for uniform flow velocity distribution was obtained, with the billet diameter of 170?mm, ram speed of 2.2?mm/s, die temperature of 465°C, billet preheated temperature of 480°C, and container temperature of 425°C. Compared with the initial process parameters, the velocity relative difference in the cross-section of extrudate was decreased from 2.81% to 1.39%. In the same way, the optimum process parameters for minimum required extrusion force were gained, with the billet diameter of 165?mm, ram speed of 0.4?mm/s, die temperature of 475°C, billet preheated temperature of 495°C, and container temperature of 445°C. A 24.7% decrease of required extrusion force with optimum process parameters was realized. Through the optimization analysis in this study, the extrusion performance has been greatly improved. Finally, the numerical results were validated by practical experiments, and the comparison showed that the optimization strategy developed in this work could provide the effective guidance for practical production.  相似文献   

4.
The extrusion die plays a crucial role in the quality control of aluminum alloy profile production. But in practice, the design of extrusion die is mainly dependent on the experience and intuition of die designers; thus, many times of modifications and experiments should be undergone until an acceptable product is gained. In this paper, the extrusion process of a large wallboard aluminum alloy profile used for high-speed train was simulated by means of HyperXtrude software, and the flow behavior of material and deformation mechanism in the die cavity were investigated. With the simulation results of the initial die design scheme, a nonuniform velocity distribution in cross-section of the extrudate was observed. For optimizing the die design scheme, two optimal schemes (adoption of double-step welding chamber and introduction of baffle plate) were proposed. Through optimization, the velocity differences in the extrudate for optimal schemes are decreased from 39.9 to 12.2 and 10.8 mm/s, respectively. Thus, the uniformity of velocity distribution was improved in optimal schemes. The extrusion die design methods for large wallboard profiles were summarized and proposed, including the design methods of baffle plate and double-step welding chamber. Through trial production, a sound wallboard aluminum profile with good geometric shape and high dimensional accuracy was gained. Additionally, the mechanical properties of the extrudate were examined by means of experimental method. It is found that the test results stratified the practical engineering requirements.  相似文献   

5.

The pyramid die extrusion for a hollow aluminum profile was analyzed to investigate the potential of such innovative dies. For this purpose, the pyramid and conventional porthole dies were respectively designed for a given hollow aluminum profile. And the extrusion process was comprehensively studied by performing different types of finite element simulation, such as the analysis of steady state, transient state and billet skin tracking. The effects of pyramid angle on the evaluation parameters of extrusion, such as extrusion load, material flow, exit temperature, length of transverse weld, quality of longitudinal weld, back end defect and die stress were overall analyzed and compared with the conventional porthole die. Through this study, the advantages and shortcomings of pyramid die were well concluded, which should be important information for die designers and makers.

  相似文献   

6.
通过引进流速均方差作为评价塑形变形时金属流动速度不均衡性指标,来有效地控制型材挤压成形时金属流动的不均匀性。通过采用有限变形弹塑性有限元方法,对不同模孔偏置位置参数下型材挤压过程进行了数值模拟研究,获得了挤压力、流速均方差和型材件内部应力应变场随其变化的规律,为进一步实现型材挤压工艺参数优化提供了理论参考。  相似文献   

7.
通过实验,研究了模孔位置对铝型材挤压时金属流速分布的影响。根据流速均等的观点提出了挤压模工作带形状设计公式,该公式已初步通过生产性验证。  相似文献   

8.
The extrusion die plays a crucial role in aluminum alloy profile production, which influences product quality and service life of extrusion die directly. In this paper, a profile with irregular shape was taken as an analysis example, and multiobjective optimization for porthole extrusion die based on modern intelligence algorithm was carried out. Aiming at achieving the uniform velocity distribution in the cross-section of the profile as well as decreasing the maximum stress on the extrusion die and the deflection of the mandrel, the angle between port bridges, the position of die orifice, and the height of welding chamber were considered as the design variables. Then Kriging model was established on the basis of Latin hypercube samplings, and above design variables were optimized using Pareto-based genetic algorithm. Finally, an optimal die structure is gained. Compared with the initial scheme, the velocity distribution in the extrudate was more even, and the stress on the die and the deflection of the mandrel were decreased obviously in the optimal scheme. The optimal design method for porthole die has strong commonality, thus, it could give useful guidelines for practical production of the same kind of aluminum profile.  相似文献   

9.
多腔壁板铝型材挤压过程数值模拟及模具优化   总被引:6,自引:2,他引:6  
挤压模具在铝型材挤压生产中起着至关重要的作用,挤压模具设计的优劣直接影响挤压产品的质量。然而实际生产中,挤压模具的设计更多依赖传统设计经验,需要多次试模和修模,无法满足产品开发需求。以典型的多腔壁板铝型材为例,应用UG建立分流组合模几何模型,采用基于任意拉格朗日—欧拉(Arbitrary Largrang-Euler,ALE)算法的HyperXtrude软件对多腔壁板铝型材的挤压成形过程进行数值模拟,获得挤压过程中速度场、温度场、应力场及金属流动情况。针对初始模具设计的不足,提出多腔壁板铝型材挤压模具优化三步曲(开设引流槽、增设阻流块、优化工作带),有效地解决了初始模具设计中速度分布不均的问题。利用数值模拟方法可以优化模具结构,提出的多腔壁板铝型材挤压模具优化三步曲对同类铝型材挤压模具结构设计具有一定的指导意义。  相似文献   

10.
The appropriate die design for multi-hole extrusion is still a challenging task because of the complicated circumstances and large material deformation during extrusion process. In the present study, the material flow during multi-hole extrusion process for producing a hollow and thin-walled profile was revealed by means of numerical simulation based on the Arbitrary Lagrangian Eulerian (ALE) method. The effects of eccentricity ratio, shape of the second-step welding chamber, and uneven bearing length on the exit velocity distribution of extrudate were synthetically investigated, and a two-hole porthole die was designed accordingly. The exit velocity and temperature on the extrudate in this optimized die were analyzed and compared with the initial die, and it was found that both of them exhibit better uniformity, which is beneficial for the enhancement of product quality. Through performing the current work, a logical and effective route for designing multi-hole porthole die was proposed as the guidance for die designers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号