首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis and design of a double two-degree-of-freedom control scheme   总被引:2,自引:0,他引:2  
Wen Tan 《ISA transactions》2010,49(3):311-317
  相似文献   

2.
Zhao YM  Xie WF  Tu XW 《ISA transactions》2012,51(3):393-399
In this paper, performance-based parameter tuning method of model-driven Two-Degree-of-Freedom PID (MD TDOF PID) control system has been proposed to enhance the control performances of a process. Known for its ability of stabilizing the unstable processes, fast tracking to the change of set points and rejecting disturbance, the MD TDOF PID has gained research interest recently. The tuning methods for the reported MD TDOF PID are based on internal model control (IMC) method instead of optimizing the performance indices. In this paper, an Integral of Time Absolute Error (ITAE) zero-position-error optimal tuning and noise effect minimizing method is proposed for tuning two parameters in MD TDOF PID control system to achieve the desired regulating and disturbance rejection performance. The comparison with Two-Degree-of-Freedom control scheme by modified smith predictor (TDOF CS MSP) and the designed MD TDOF PID tuned by the IMC tuning method demonstrates the effectiveness of the proposed tuning method.  相似文献   

3.
A novel fuzzy logic compensating (FLC) scheme is proposed to enhance the conventional computed-torque control (CTC) structure of manipulators The control scheme is based on the combination of a classical CTC and FLC, and the resulting control scheme has a simple structure with improved robustness. Further improvement of the performance of the FLC scheme is achieved through automatic tuning of a weight parameter a leading to a self-tuning fuzzy logic compensator, so the system uncertainty can be compensated very well. By taking into account the full nonlinear nature of the robotic dynamics, the overall closed-loop system is shown to be asymptotically stable. Experimental results demonstrate the effectiveness of the computed torque and fuzzy compensation scheme to control a manipulator during a trajectory tracking task.  相似文献   

4.
This paper presents a parameters tuning method based on the genetic algorithm (GA) for an active disturbance rejection control (ADRC) of a three-axis inertially stabilized platform (ISP) with imaging sensors. To improve the stabilization accuracy and robustness of an aerial ISP under multi-source disturbances environment, an ADRC control scheme is first proposed. Then, to accurately identify and tune the parameters in the ADRC controller, a GA-based parameters tuning method is proposed. In this way, the performance of the ADRC is superior to the empirical method. To validate the proposed method, the simulations and experiments are carried out. The results show that the proposed ADRC with GA-based parameters tuning method has significant disturbance rejection ability which can improve the stabilization accuracy obviously. Compared with the ADRC with empirically tuning method, the stabilization error (RMS) under movable base is decreased up to 50.09%.  相似文献   

5.
Improving performance using cascade control and a Smith predictor   总被引:9,自引:0,他引:9  
Kaya I 《ISA transactions》2001,40(3):223-234
Many investigations have been done on tuning proportional-integral-derivative (PID) controllers in single-input single-output (SISO) systems. However, only a few investigations have been carried out on tuning PID controllers in cascade control systems. In this paper, a new approach, namely the use of a Smith predictor in the outer loop of a cascade control system, is investigated. The method can be used in temperature control problems where the secondary part of the process (the inner loop) may have a negligible delay while the primary loop (the outer loop) has a time-delay. Two different approaches, including an autotuning method, to find the controller parameters are proposed. It is shown by some examples that the proposed structure as expected can provide better performance than conventional cascade control, a Smith predictor scheme or single feedback control system.  相似文献   

6.
A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.  相似文献   

7.
Ou L  Yu L  Zhang W 《ISA transactions》2007,46(3):277-287
In this paper a novel ratio control scheme is proposed for stable and unstable processes with time delay. The proposed ratio control system consists of two control loops with two-degrees-of-freedom control structure, which decouples the set-point response of each loop from its disturbance response. Two ratio controllers separately for the set-point and load disturbance changes are introduced between the two control loops, in order to achieve improved ratio control performance during the transients caused by the set-point and disturbance changes and to decouple the set-point response of the whole ratio control system from its disturbance response. For easy understanding and tuning, all the controllers in the ratio control system are designed analytically. As a result, the set-point and load disturbance responses of the ratio control system can be independently and conveniently tuned by a single control parameter. In addition, the proposed ratio control scheme can provide quantitative performance estimation. Simulation examples are included to illustrate the effectiveness of the proposed method.  相似文献   

8.
Most of the existing PID parameters tuning methods are only effective with pre-known accurate system models, which often require some strict identification experiments and thus infeasible for many complicated systems. Actually, in most practical engineering applications, it is desirable for the PID tuning scheme to be directly based on the input-output response of the closed-loop system. Thus, a new parameter tuning scheme for PID controllers without explicit mathematical model is developed in this paper. The paper begins with a new frequency domain properties analysis of the PID controller. After that, the definition of characteristic frequency for the PID controller is given in order to study the mathematical relationship between the PID parameters and the open-loop frequency properties of the controlled system. Then, the concepts of M-field and θ-field are introduced, which are then used to explain how the PID control parameters influence the closed-loop frequency-magnitude property and its time responses. Subsequently, the new PID parameter tuning scheme, i.e., a group of tuning rules, is proposed based on the preceding analysis. Finally, both simulations and experiments are conducted, and the results verify the feasibility and validity of the proposed methods. This research proposes a PID parameter tuning method based on outputs of the closed loop system.  相似文献   

9.
Abstract

In this paper, a cross‐coupled ratio control structure with two blend stations has been proposed. The main feature of the proposed structure is to give a good ratio performance for both set‐point changes and load disturbances that might occur in any one of the two loops. A simple tuning procedure for the inner controllers of the two loops and an easy design methodology for the blend stations have been proposed in order to avoid any significant tuning and design effort for the implementer. The proposed structure is realized on a microcontroller based system. This cross‐coupled ratio control structure that has been embedded into the microcontroller is then used to maintain the prescribed ratio “a” of the two processes, namely heat transfer process trainer (PT 326‐Feedback) and process control simulator (PCS 327‐Feedback). The same two processes are run under another alternative ratio control structure and the results are compared with each other.  相似文献   

10.
This article presents design of Sliding Mode Controller with proportional integral type sliding function for DC-DC Buck Converter for the controlled power supply. The converter with conventional sliding mode controller results in a steady state error in load voltage. The proposed modified sliding function improves the steady state and dynamic performance of the Convertor and facilitates better choices of controller tuning parameters. The conditions for existence of sliding modes for proposed control scheme are derived. The stability of the closed loop system with proposed sliding mode control is proved and improvement in steady state performance is exemplified. The idea of adaptive tuning for the proposed controller to compensate load variations is outlined. The comparative study of conventional and proposed control strategy is presented. The efficacy of the proposed strategy is endowed by the simulation and experimental results.  相似文献   

11.
In this paper, an integrated data-driven fault-tolerant control (FTC) design scheme is proposed under the configuration of the Youla parameterization for multiple-input multiple-output (MIMO) systems. With unknown system model parameters, the canonical form identification technique is first applied to design the residual observer in fault-free case. In faulty case, with online tuning of the Youla parameters based on the system data via the gradient-based algorithm, the fault influence is attenuated with system performance optimization. In addition, to improve the robustness of the residual generator to a class of system deviations, a novel adaptive scheme is proposed for the residual generator to prevent its over-activation. Simulation results of a two-tank flow system demonstrate the optimized performance and effect of the proposed FTC scheme.  相似文献   

12.
This paper proposes a new method for automatic tuning of the Smith predictor controller based on a Repetitive Control (RC) approach. The method requires the input of a periodic reference signal which can be derived from a relay feedback experiment. A modified repetitive control scheme repetitively changes the control signal to achieve tracking error convergence. Once a satisfactory performance is achieved through the learning control, the parameters of the Smith predictor controller can be computed from the signals using a nonlinear least squares algorithm. The same relay feedback experiment can provide an initial parameter vector for an efficient implementation of the parameter estimation. Simulations and experimental results will be furnished to illustrate the effectiveness of the proposed tuning method.  相似文献   

13.
The optimal tuning of adaptive flap controller can improve adaptive flap control performance on uncertain operating environments, but the optimization process is usually time-consuming and it is difficult to design proper optimal tuning strategy for the flap control system (FCS). To solve this problem, a novel adaptive flap controller is designed based on a high-efficient differential evolution (DE) identification technique and composite adaptive internal model control (CAIMC) strategy. The optimal tuning can be easily obtained by DE identified inverse of the FCS via CAIMC structure. To achieve fast tuning, a high-efficient modified adaptive DE algorithm is proposed with new mutant operator and varying range adaptive mechanism for the FCS identification. A tradeoff between optimized adaptive flap control and low computation cost is successfully achieved by proposed controller. Simulation results show the robustness of proposed method and its superiority to conventional adaptive IMC (AIMC) flap controller and the CAIMC flap controllers using other DE algorithms on various uncertain operating conditions. The high computation efficiency of proposed controller is also verified based on the computation time on those operating cases.  相似文献   

14.
A fuzzy-logic antiswing controller for three-dimensional overhead cranes   总被引:2,自引:0,他引:2  
Cho SK  Lee HH 《ISA transactions》2002,41(2):235-243
In this paper, a new fuzzy antiswing control scheme is proposed for a three-dimensional overhead crane. The proposed control consists of a position servo control and a fuzzy-logic control. The position servo control is used to control crane position and rope length, and the fuzzy-logic control is used to suppress load swing. The proposed control guarantees not only prompt suppression of load swing but also accurate control of crane position and rope length for simultaneous travel, traverse, and hoisting motions of the crane. Furthermore, the proposed control provides practical gain tuning criteria for easy application. The effectiveness of the proposed control is shown by experiments with a three-dimensional prototype overhead crane.  相似文献   

15.
This paper presents finite-time sliding mode control (FSMC) with predefined constraints for the tracking error and sliding surface in order to obtain robust positioning of a robot manipulator with input nonlinearity due to an unknown deadzone and external disturbance. An assumed model feedforward FSMC was designed to avoid tedious identification procedures for the manipulator parameters and to obtain a fast response time. Two constraint switching control functions based on the tracking error and finite-time sliding surface were added to the FSMC to guarantee the predefined tracking performance despite the presence of an unknown deadzone and disturbance. The tracking error due to the deadzone and disturbance can be suppressed within the predefined error boundary simply by tuning the gain value of the constraint switching function and without the addition of an extra compensator. Therefore, the designed constraint controller has a simpler structure than conventional transformed error constraint methods and the sliding surface constraint scheme can also indirectly guarantee the tracking error constraint while being more stable than the tracking error constraint control. A simulation and experiment were performed on an articulated robot manipulator to validate the proposed control schemes.  相似文献   

16.
岑豫皖 Sun  L 《机械科学与技术》1998,17(3):366-368,374
给出了用于转子系统强迫振动主动控制的自适应控制方案,它主要由可控径向轴承和自校正控制器两部分组成。可控轴承为系统的执行元件,自校正算法则由多步递推预报器和控制器组成,通过在线测量转子系统输入输出值,调整油腔压力而使强迫振动振幅减小。仿真计算表明自适应控制适用于转子系统强迫振动控制,转子不平衡引起的振动幅值可有效地减小。  相似文献   

17.
An approach to control integrating processes with elevated deadtime using a Smith predictor sliding mode controller is presented. A PID sliding surface and an integrating first-order plus deadtime model have been used to synthesize the controller. Since the performance of existing controllers with a Smith predictor decrease in the presence of modeling errors, this paper presents a simple approach to combining the Smith predictor with the sliding mode concept, which is a proven, simple, and robust procedure. The proposed scheme has a set of tuning equations as a function of the characteristic parameters of the model. For implementation of our proposed approach, computer based industrial controllers that execute PID algorithms can be used. The performance and robustness of the proposed controller are compared with the Matausek-Mici? scheme for linear systems using simulations.  相似文献   

18.
The proposed algorithm of extended predictive control (EPC) represents an exact method for removing the ill-conditioning in the system matrix by developing a unique weighting structure for any control horizon. The main feature of the EPC algorithm is that it uses the condition number of the system matrix to evaluate a single tuning parameter that provides a specified closed-loop response. Robust analysis demonstrated that EPC is more robust in comparison with move-suppressed and m-shifted predictive controllers in all aspects of process variation in gain, delay, and time-constant ratios. Tuning of EPC is effective and simple since there is a direct relationship between closed-loop performance and its tuning parameter.  相似文献   

19.
This paper investigates sensorless indirect field oriented control (IFOC) of SLIM with full-order Luenberger observer. The dynamic equations of SLIM are first elaborated to draw full-order Luenberger observer with some simplifying assumption. The observer gain matrix is derived from conventional procedure so that observer poles are proportional to SLIM poles to ensure the stability of system for wide range of linear speed. The operation of observer is significantly impressed by adaptive scheme. A fuzzy logic control (FLC) is proposed as adaptive scheme to estimate linear speed using speed tuning signal. The parameters of FLC are tuned using an off-line method through chaotic optimization algorithm (COA). The performance of the proposed observer is verified by both numerical simulation and real-time hardware-in-the-loop (HIL) implementation. Moreover, a detailed comparative study among proposed and other speed observers is obtained under different operation conditions.  相似文献   

20.
Zhang W  Xu X 《ISA transactions》2002,41(1):31-36
Recently, a simplifying controller has been proposed based on the principal of simplification of the control system transfer functions, which offers improved control for processes with a large time delay. It is the purpose of this complementary paper to give a comprehensive analysis on the scheme. First, the relationship among the simplifying controller, the Smith predictor, and the internal model control are discussed. Second, an analytical design procedure is developed based on internal model control (IMC) and optimal solution is derived. Third, the problem of estimating the time domain performance of the closed loop system, quantitatively, is discussed. Fourth, a simple robust tuning procedure is presented. Numerical examples are provided to illustrate the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号