首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 765 毫秒
1.
针对直线电机伺服系统存在非线性、不确定性和各种扰动等特性,提出了一种基于扰动观测器和预测函数控制的复合控制方法。首先建立直线电机伺服系统的数学模型;然后设计扰动观测器对参数变化和外部干扰进行补偿,将干扰估计值反馈给预测函数控制器,建立带有干扰信息的预测模型,从而优化控制方法,提高伺服系统的控制效果。仿真结果表明,采用该复合控制方法设计的扰动观测器和预测函数控制器能够有效抑制扰动,满足系统对快速性和稳态精度的要求,系统具有较强的鲁棒性和抗干扰性,能够实现伺服系统的有效控制。  相似文献   

2.
针对扰动对永磁同步电机转速伺服系统性能的影响,提出了基于扰动观测器的电流环自适应滑模控制方法。设计了自适应律在线估计系统的内部参数摄动以补偿模型不确定性扰动。同时,设计了滑模扰动观测器实时估计系统外部负载扰动,并将观测值前馈补偿到电流环自适应滑模控制器,在提高系统鲁棒性的同时降低滑模控制系统的抖振。实验结果显示,采用基于扰动观测器的电流环自适应滑模控制方法,系统可快速、准确、无超调地跟踪900r/min的速度指令,调节时间为0.08s,稳态误差为±5r/min。加入0.6N·m的负载扰动,该控制方法的最大转速波动为21r/min,比PI控制方法的转速波动减小了3.4%。仿真和实验结果表明,基于扰动观测器的电流环自适应控制方法提高了永磁同步电机转速伺服系统的鲁棒性和动态响应性能,同时可有效抑制滑模控制系统的抖振。  相似文献   

3.
随着微电子技术的迅速发展,伺服控制系统在现代工业中得到了广泛的应用.但是工业技术的进步也给伺服控制系统的定位精度提出了更高的要求.因此,为了使交流电机伺服系统能够在未知载荷的条件下能够进行准确定位,必须要对交流电机位置伺服系统的扰动补偿进行控制.针对这一需求提出了一种参数化控制方案,进行了实际测试,并取得了良好的定位效果.  相似文献   

4.
由于传统的三环控制方法已不能满足伺服系统快速响应和高精度的要求,提出一种微分前馈和位置环带微分项的负反馈相结合的复合控制策略。针对负载扰动问题,设计带状态反馈误差微分项的负载转矩观测器。实验与仿真表明:该控制策略的跟踪精度更高,响应速度更快,抗负载能力更强。  相似文献   

5.
针对工业机器人关节伺服系统存在时变负载和模型不确定性问题,提出了基于惯量估计的变增益自抗扰控制策略。首先,建立了关节伺服系统数学模型,并通过频域分析,得到了关节伺服系统二阶状态方程。为了削弱扰动和不确定参数的影响,设计了线性扩张状态观测器,利用自适应的方法估计惯量,同时结合鲁棒和滑模控制以保持系统稳定性,并对该控制策略进行了仿真和实验研究。实验结果表明,在该控制策略下,电机端正弦信号跟踪误差小于0.2 rad,在负载扰动下位置误差小于0.03 rad,较之单一自抗扰控制误差大约减小了40%,具有较强的抗扰动性,提高了关节伺服系统的控制精度和动态性能。  相似文献   

6.
摘要:针对工业机器人关节伺服系统存在时变负载和模型不确定性问题,提出了基于惯量估计的变增益自抗扰控制策略。首先,建立了关节伺服系统数学模型,并通过频域分析,得到了关节伺服系统二阶状态方程。为了削弱扰动和不确定参数的影响,设计了线性扩张状态观测器,利用自适应的方法估计惯量,同时结合鲁棒和滑模控制以保持系统稳定性,并对该控制策略进行了仿真和实验研究。实验结果表明,在该控制策略下,电机端正弦信号跟踪误差小于02 rad,在负载扰动下位置误差小于003 rad,较之单一自抗扰控制误差大约减小了40%,具有较强的抗扰动性,提高了关节伺服系统的控制精度和动态性能。 .txt  相似文献   

7.
为提高车体内置式轮毂永磁同步电机驱动系统的控制可靠性,针对传统扰动观测造成的噪声放大问题,提出基于改进扰动观测器的反电动势电机无位置传感器控制算法,算法将电流反电动势作为观测干扰量进行建模,以实现扰动准确估计,进而通过反正切估计转子的精确位置,同时基于转子速度进行位置误差补偿,实现无位置传感器电机的鲁棒控制,仿真实验表明,改进算法在在电机不同工况和负载下能准确估计转子位置,具有较好的适应能力和位置跟踪补偿能力,验证了算法的有效性。  相似文献   

8.
井下随钻系统脉冲器工作条件复杂,同时泥浆泵冲会对电机的控制产生扰动,导致电机的负载特性不同于常规的伺服控制系统。基于永磁同步电机的理论模型和矢量控制理论,建立位置环、速度环和电流环三闭环的控制方法。室内泥浆循环系统的实验结果证明,采用三闭环伺服控制方法,永磁同步电机能够快速准确地跟随正弦位置信号,且具有很好的抗负载扰动能力。  相似文献   

9.
双绕组无轴承磁通切换电机是非线性多变量的复杂对象,传统的转速PI与径向位移PI控制存在超调大,系统易受外界扰动影响等缺点。基于滑模变结构控制思想,提出一种转子径向位移滑模控制策略。针对滑模控制中存在建模不准确,以及转子动力学模型中存在陀螺效应等问题,通过建立一种扩张状态观测器对系统扰动进行观测,并在滑模控制基础上加入扰动前馈补偿,设计出一种径向位移滑模控制与扩张状态观测器的复合控制策略。实验结果表明,所提径向位移滑模控制相比传统PI控制具有响应速度快、径向位移脉动小、抗负载扰动性强等优点。所提径向位移滑模与扩张状态观测器的复合控制策略,相比于径向位移滑模控制可有效减小转子径向位移脉动约30%,进一步增强了系统的鲁棒性。  相似文献   

10.
永磁同步直线电机由于反电势和逆变器频繁切换导致电流谐波分量较大,同时参数时变以及负载突变等扰动严重影响伺服系统的控制精度。本文采用一种基于降阶状态观测器的双环自抗扰伺服控制算法,以降低控制系统的谐波抑制从而提高控制精度。首先,构造了位置速度环级联的二阶自抗扰控制器。运用极点配置法对三阶线性状态观测器进行降阶,减小了相位滞后的影响,提高了伺服系统的控制精度;其次,电流环采用一阶非线性自抗扰控制器,消除了积分饱和的影响,降低了三相电流的谐波含量。最后,与基于自抗扰控制的其他优化算法进行对比,实验表明在多工况下降阶双环自抗扰控制的总谐波失真不超过2.13%,推力波动可减小至1.49%,稳态误差不大于15μm。  相似文献   

11.
为进一步提高传统变结构自抗扰控制器的控制精度,增强永磁伺服驱动系统的抗干扰能力,提出一种改进变结构自抗 扰控制策略。 该方法在基于变结构原理设计的扩张状态观测器中引入位置、速度的观测误差以实现状态变量的无差估计,采用 基于指数趋近律设计的非线性状态误差反馈控制律实现线性控制与非线性控制的平滑过渡,并在此基础上引入位置跟踪误差, 提高伺服系统的跟踪性能。 通过实验分析比较了改进变结构自抗扰控制与传统变结构自抗扰控制两种控制策略,结果显示改 进控制策略较传统控制策略的位置跟踪误差减少了约 30% 。 当负载突变时,传统控制策略的跟踪误差约为负载突变前最大跟 踪误差的 3. 4 倍,而改进变结构自抗扰控制策略仍能准确跟踪给定信号。  相似文献   

12.
干扰是影响系统性能的主要因素,利用干扰观测器可对交流伺服系统中由负载改变、工作环境变化和建模误差等产生的干扰进行补偿。工作时先在线辨识出系统的模型参数,将干扰观测器的名义模型自动调整为辨识值,再进行所需的控制。研究结果表明,采用干扰观测器结合模型参数在线辨识的交流伺服系统具有较强的鲁棒性。  相似文献   

13.
以提升起重机械电机位置控制响应精度为目标,提出基于互补滑模的起重机械电机位置伺服控制方法。通过构建起重机械电机数学模型,分析位置伺服控制器状态和机械运动状况,以固定结构控制位置响应的加、减速过程,以互补滑模变结构控制位置响应匀速过程,确定起重机械电机的速度曲线,利用阶梯型曲线逼近指数型曲线,实现起重机械电机速度控制,并设计三阶线性扩张状态观测器( ESO )预估位置伺服控制器的各状态量,消除伺服控制的噪声及抖振,提升起重机械电机的位置互补滑模伺服控制效果。实验结果表明,低速空载、负载下电流曲线光滑、无频率波动,该方法在不同给定脉冲下均可实现位置伺服控制的快速响应,定位准确度高且无超调,位置伺服控制效果突出。  相似文献   

14.
基于H∞控制理论的交流伺服系统控制器设计   总被引:1,自引:1,他引:0  
为了抑制模型摄动及外部干扰对永磁同步电动机(PMSM)交流伺服系统的影响,根据永磁同步电动机的鲁棒控制模型设计了鲁棒H∞反馈控制器,采用鲁棒H∞反馈控制器对电流环的电流突变进行了补偿,减少了负载阻力、端部效应等外部扰动对系统性能的影响。仿真结果表明:鲁棒H∞控制具有良好的鲁棒稳定性和抗干扰性。  相似文献   

15.
王帅  邓永停  朱娟 《光学精密工程》2017,25(10):2627-2635
针对地基大口径望远镜伺服系统的抗扰动问题,提出了一种抗扰动控制算法。该算法采用双闭环控制结构:内环为高带宽的电流环,采用PI控制器;外环为速度环;采用线性自抗扰控制器,通过线性扩张状态观测器辨识出系统扰动,然后将该扰动前馈到系统控制量中去,构成复合校正系统。为解决大动态输入引起的控制器饱和问题,状态观测器的输入控制量加入了抗饱和控制算法,保证了系统的稳定性和良好的动态特性。仿真和实验结果表明:与传统的PI控制器相比,引入抗饱和功能的自抗扰控制器在高低速均可以获得良好的动态性能;在低速平稳跟踪实验中,速度波动误差(RMS)由0.000 68(°)/s降低到0.000 32(°)/s。实验结果证明提出的方法能够有效提高伺服系统抗扰动能力和速度跟踪的平稳性。  相似文献   

16.
章玮  王伟颖 《机电工程》2012,29(7):821-824,832
针对永磁同步电动机(PMSM)的负载扰动问题,提出了一种基于降阶负载扰动观测器的永磁同步电机前馈控制方法。通过设计降阶负载观测器来实时观测电机负载转矩变化,并将观测值作为电流前馈补偿来增加系统鲁棒性;考虑到转动惯量对观测器的影响,引入了梯度校正参数估计法,对电机的转动惯量进行了实时辨识;最后,将负载转矩观测与永磁同步电机的矢量控制相结合,对永磁同步电机的q轴分量进行了转矩前馈补偿以提升系统的动态性能。仿真结果表明,采用梯度校正参数估算法能快速准确地迭代计算永磁同步电机的转动惯量,所设计的降阶负载扰动观测器能有效地估计转矩变化。研究结果表明,基于降阶负载转矩观测器的前馈补偿与永磁同步电机矢量控制相结合,能有效地提升永磁同步电动机转速控制的鲁棒性。  相似文献   

17.
Cogging effect which can be treated as a type of position-dependent periodic disturbance, is a serious disadvantage of the permanent magnetic synchronous motor (PMSM). In this paper, based on a simulation system model of PMSM position servo control, the cogging force, viscous friction, and applied load in the real PMSM control system are considered and presented. A dual high-order periodic adaptive learning compensation (DHO-PALC) method is proposed to minimize the cogging effect on the PMSM position and velocity servo system. In this DHO-PALC scheme, more than one previous periods stored information of both the composite tracking error and the estimate of the cogging force is used for the control law updating. Asymptotical stability proof with the proposed DHO-PALC scheme is presented. Simulation is implemented on the PMSM servo system model to illustrate the proposed method. When the constant speed reference is applied, the DHO-PALC can achieve a faster learning convergence speed than the first-order periodic adaptive learning compensation (FO-PALC). Moreover, when the designed reference signal changes periodically, the proposed DHO-PALC can obtain not only faster convergence speed, but also much smaller final error bound than the FO-PALC.  相似文献   

18.
电液马达伺服系统中存在各种类型的扰动,包括参数不确定性和不确定非线性,制约着其高精度位置控制。针对电液马达伺服系统高精度位置跟踪控制,考虑系统的黏性摩擦特性以及外干扰等建模不确定性,提出了一种基于鲁棒自适应的电液马达伺服系统高精度位置控制策略。所提出的全状态控制器通过自适应对模型不确定性进行估计及前馈补偿,提高了系统的低速伺服性能;通过自适应对未建模干扰等不确定性的上界进行估计并前馈补偿,提高了系统对外干扰的鲁棒性。所设计的闭环控制器还能保证系统获得渐近跟踪性能,对比仿真验证了其可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号