首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, a simple detection system comprised of one 60Co source and just one NaI detector was investigated in order to identify flow regime and measure void fraction in gas–liquid two phase flows. For this purpose, 3 main flow regimes of two-phase flows including stratified, homogenous and annular with void fractions in the range of 5–95% were simulated by Monte-Carlo N Particle (MCNP) code. At first step, 3 features (count under full energy peaks of 1.173 and 1.333 MeV, and count under Compton continuum) were extracted from registered gamma spectrum. These 3 extracted features were used as inputs of artificial neural network (ANNs). A primary network was trained for identifying the flow regimes, but after testing many different structures, it was found that just two regimes of stratified and annular could be completely identified from each other. After identifying the mentioned two flow regimes by the first ANN, two specific ANNs were also implemented for predicting the void fraction. Using the proposed method in this work, void fraction percentages were predicted with a mean relative error (MRE) of less than only 0.42%. Using fewer detectors is of advantage in industrial nuclear gauges, because of reducing economical expenses and also simplicity of working with these systems.  相似文献   

2.
截面含气率作为气液两相流动过程中的基本参数之一,对石油管道的开采、输运,核反应堆冷却塔的设计等过程具有重要意义。本文提出了基于激光诱导成像技术和高速摄录系统的截面含气率直接检测方法,有效的避免管道曲率和介质折射率导致的光学畸变。在河北大学多相流循环装置进行实验,测量了18个流量点,液相流量测量范围10~35 L/min,气相流量测量范围2.0~3.0 L/min。运用计量比对的思想,对两种检测技术获得的截面含气率值求取偏差并进行修正,最大偏差仅为0.014 59。结果表明两种方法得到的截面含气率值具有较好的一致性,证明本文提出的荧光成像技术对气液两相分层流截面含气率的检测是有效的。  相似文献   

3.
以空气-水为介质,对科氏流量计应用于气液两相流双参数测量进行了实验研究.实验过程中保持液相流量一定,通过加入不同体积分数的空气来分析含气率对科氏流量计测量精度的影响,采用Weisman垂直上升管气液两相流流型图与实验数据进行了比较.结合实验结果,初步归纳出含气量、流型和科氏流量计测量精度之间的关系,总结出液相中含气影响科氏流量计测量精度的主要因素及其影响规律,为进一步研究科氏流量计气液两相流测量误差修正提供了一种技术方法.  相似文献   

4.
This paper proposes a novel flow pattern identification method using ultrasonic echo signals within the pipe wall. A two-dimensional acoustic pressure numerical model is established to investigate the ultrasonic pulse transmission behavior between the wall-gas and wall-liquid interface. Experiments were also carried out at a horizontal air-water two-phase flow loop to measure the ultrasonic echo pulse signals of stratified flow, slug flow, and annular flow. It is interesting to find that the attenuation of the ultrasonic pulse at the wall-liquid interface is faster than the attenuation at the wall-gas interface. An RBF neural network is constructed for online flow pattern identification. The normalized envelop area and the area ratios of the echo spectrum are selected as the input parameters. The results show that the stratified flow, slug flow, and annular flow can be identified with an accuracy of 94.0%.  相似文献   

5.
Void fraction is an essential parameter of gas-liquid two-phase flow and experiments were executed to investigate the void fraction fluctuation characteristics of gas-liquid two phase flow through a sudden expansion tube. Two 16 × 16 wires mesh sensors were applied to measure the phase distribution of upstream pipe(pipe-32) and downstream pipe(pipe-50). The superficial gas velocity is in the range of 3.46 m/s - 22.46 m/s and the superficial liquid velocity ranges from 0.034 m/s to 0.414 m/s. Flow pattern evolution of upstream and downstream pipes was reconstructed and compared. The experiment results show that, in contrast to pipe-32, the void fraction of pipe-50 shows different trends with the increase of liquid and gas velocity. Liquid-carrying capacity is essential in the relationship between the void fraction of pipe-32 and pipe-50. The critical superficial liquid and gas velocities are proposed to characterize the liquid-carrying capacity. The maximum critical superficial gas and liquid velocity is 15.56 m/s and 0.207 m/s, respectively. Besides, a model is proposed to describe the relationship of void fraction between pipe-32 and pipe-50. It is found that the prediction error is less than ±10% in the case of annular flow.  相似文献   

6.
小波变换辨识流型的一种新方法研究   总被引:11,自引:2,他引:9  
本文提出了一种基于小波分析进行水平管气液两相流流型辨识的新方法。该方法以测试管段的管程压降△P的波动作为测量信号,通过对其小波变换结果的分析,根据不同流型能量分布的定量指标确定了流型判别规则。实验结果表明,这种判别方法能有效地实现对水平管层状流、波状流、塞状流、弹状流等四种典型流型的在线辨识。  相似文献   

7.
Flow regime information can be used to enhance measurement accuracy of flowmeters. Void fraction measurement and regime identification of two-phase flows including, liquid and gas phases are crucial issues in oil and gas industries. In this study, three different regimes including annular, stratified and homogeneous in the range of 5%–90% void fractions, were simulated by Monte Carlo N-Particle (MCNP) Code. In simulated structure, a Cesium 137 source and only one NaI detector were used to record received transmitted photons. Fast Fourier Transform (FFT) was applied to the registered signals of the detector in order to analyze in the frequency domain. Several features of signals in the frequency domain were extracted. These features were the average value of fast Fourier transform, the amplitude of dominant frequency, variance, Kurtosis and RMS (root mean square). Different combinations of these features were investigated in order to find the best features with the best separation ability for using as the inputs of Artificial Neural Network (ANNs). Two different Multi-Layer Perceptron (MLP) neural networks were used to recognize flow regimes and predict the void fraction. In regime identification procedure, all of the three mentioned regimes were recognized correctly and in the volume fractions prediction procedure, the void fraction was also estimated with a Mean Relative Error (MRE) percentage of less than 0.5%. In all of the previous studies, at least two detectors were used. Using the proposed method in this paper, number of detectors was reduced to one.  相似文献   

8.
Two-phase horizontal intermittent flow in straight pipes is experimentally investigated. A new procedure is proposed to characterize the flow through the statistical analysis of the instantaneous cross-sectional averaged void fraction obtained by means of ring impedance probes. The algorithm, based on the statistical analysis of the void fraction records, allows the main intermittent flow parameters, such as slug frequency and length, time average void fraction, minimum and average liquid film height to be evaluated. The procedure is validated through flow visualizations, as obtained from a fast digital video camera.Experiments on air-water horizontal flows in 40 and 60 mm inner diameter pipes are performed. The operating conditions cover the 0.3–4.0 and 0.6-3.0 m/s gas and liquid superficial velocity ranges, respectively.An extensive comparison with literature data shows a general agreement with present measurement. The reliability of both the instrumentation and the signal analysis procedures allows new correlations for minimum and average liquid film height in stratified regions to be proposed. Finally proper dimensionless numbers were applied to correlate frequency data in a wide range of superficial velocity values.  相似文献   

9.
The void fraction is one of the key parameters in the measurement of gas/liquid two-phase flow. It can be derived from the absolute conductivity distribution based on Maxwell׳s theory. With Electrical Resistance Tomography (ERT) technology, the absolute conductivity distribution is obtained by multiplying the relative conductivity image with the reference conductivity which is conventionally the liquid conductivity of a gas/liquid flow. Unfortunately the liquid conductivity is not always available. Therefore, a conductivity fitting method is proposed in this paper, to find an optimal reference conductivity, which will be used in substituting the liquid conductivity to reconstruct the quasi-absolute conductivity image. The optimal reference conductivity fitting method is proposed and validated by simulation and experiments under certain flow regimes, e.g. slug flow, annular flow and bubbly flow. The simulation and experimental results show that, independent from prior-knowledge, the fitted quasi-homogenous conductivity is close to the average conductivity of the sensing field. It also leads to a much more accurate estimation of void fraction than the conventional method using liquid conductivity as the reference. With the proposed method, the ERT technique can play a more significant role in the measurement of multiphase flow (MPF).  相似文献   

10.
Flow regime identification based on local parameters of axial upward two-phase flow in vertical tube bundles, at high-temperature and high-pressure, was performed using optical probes. A staggered arrangement of the tube bundles was simulated inside a non-circular test channel, the tube size and pitch are same as that in a real steam generator of a PWR under design. Optical probes were utilized to acquire the void fraction, interface frequency, and fluctuation characteristics of the local void fraction at two typical locations (centroid of the three tubes, named op-1, and centre of the minimum gap between two tubes, named op-2). The system pressure ranged from 5 to 9 MPa, mass flux from 100 to 350 kg m−2 s−1, thermodynamic steam quality from 0 to 1, and inlet fluid temperature from 263.9 to 303.3 °C, depending on the saturation pressure. This study investigated local parameters and flow pattern characteristics of high-pressure steam-water two-phase flow in vertical tube bundles using optical probes, with the measurement error of less than 2%. Results showed that local void fraction at op-1 was much larger than that at op-2, and the local void fraction difference between op-1 and op-2 increased first and then gradually decreased, which was primarily affected by the transition in flow regimes. The flow pattern characteristics of steam-water two-phase flow were described based on three aspects, namely, variation in interface frequency with local void fraction, fluctuation characteristics of local void fraction, and statistical analysis of local void fraction deviating from the average. Additionally, the flow regime identification criteria, applicable to the steam-water two-phase flow in vertical tube bundles, were proposed based on local parameters.  相似文献   

11.
Based on Biot–Savart law and single-phase flow Kármán vortex characteristics, flow field has been analyzed when gas–liquid flow past a fixed bluff body with high void fraction. Vortex signal characteristics have been studied for stratified two-phase flow on atmospheric conditions in a horizontal pipe. To discuss the relation between void fraction and vortex signal amplitude spectrum, this paper sets up the vortex-induced pressure field model for gas–liquid two-phase flow and gives the relationship between void fraction and relative amplitude spectrum of two-phase flow to single-phase flow. An algorithm is proposed for predicting the two-phase flow parameters. Experiments were performed using air–water as working fluid along with a test tube diameter of 50 mm, at gas volume flow rate of 20–68 m3/h, and void fraction of 0.9–1. The results indicate that calculations by the vortex-induced pressure field model on the amplitude spectrum of vortex signal are in good agreement with the experimental data, and relative errors of the algorithm predictions on gas volume flow rate and liquid volume flow rate are 0.08 and 0.56, respectively.  相似文献   

12.
This paper introduces the TERT-IV prototype developed by Tianjin University. The application of the TERT-IV system to measurement parameters of two-phase flow has been studied. The methods of analyzing measured data of ERT system are presented and applied to identify flow regimes and estimate void fraction. For the several typical flow regimes, the methods of principal component analysis and artificial neural network to identify the two-phase flow regimes is presented, and that is proved to have higher recognition rate by experimental test. For the different phase distribution on a pipe cross-section, the methods of relative changes summation and polynomial regression are used to estimate void fraction, and are proved to be possible by comparing the results of simulation calculation to the analytic results of experimental measured data.The research results show that the method is feasible using feature extraction and analysis data to measure the parameters of two-phase flow under the different flow conditions, and prove that it is possible to monitor on-line the transportation process of air/water two-phase flow using ERT system.  相似文献   

13.
A water-driven annular type ejector loop is designed and constructed for air absorption. Fabricated ejector unit is horizontally installed in the loop, and annular water jet at the throat entrained atmospheric air through the circular pipe placed at the center of the ejector. The tested range of water flow rate is 160 L/min to 320 L/min and volumetric flow rate of water and air and local pressure are quantitatively measured using LabVIEW signal express program. For the quantitative measurement of bubble velocity, cinematic PIV technique using a high speed camera is adapted. In post processing, each bubble is used as seeding particles and ensemble averaged bubble velocity field at vertical plane of the ejector system is finally acquired. In the range of experiment, the bubble size distribution at downstream of the ejector seems to be quite uniform so that the flow can be classified as a homogeneous bubbly flow. In case of low range of water flow rate, the transition from bubbly flow to stratified flow occurs at the atmospheric outlet condition. As a comparative study, a numerical simulation on the same ejector shape is performed to understand the more detail hydrodynamic characteristics in the annular type ejector system. Homogeneous bubbly flow regime is used as default two-phase flow regime, and void fraction at the vertical plane of the ejector system is qualitatively compared with that of experiment. In volume flow rate comparison, numerical prediction agrees well with that of experiment where the homogeneous bubbly flow is maintained.  相似文献   

14.
A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760 mm long and 100 mm wide test section with 2.0 and 5.0 mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition became pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant.  相似文献   

15.
Gas/liquid two-phase flow regime identification by ultrasonic tomography   总被引:1,自引:0,他引:1  
A gas/liquid two-phase flow is considered as a strongly inhomogeneous medium with respect to high contrast in acoustic impedance distribution. Based upon a binary logic operation and a method of “time-of-propagation along straight path”, an ultrasonic facility for tomographic imaging of gas/liquid two-phase flow was developed. In this paper the principle and construction of this facility are briefly introduced. Emphasis is placed on the evaluation of its performance in flow regime identification and cross-sectional void fraction measurement. Several flow pattern models were used and the corresponding monitoring results given. Finally, limitations and possible future improvements of the system are discussed.  相似文献   

16.
Venturi, as the primary flow measurement sensor, is widely used in various industrial fields of oil and natural gas. Pressure drop of the Venturi is a crucial factor in the process design of exploitation and transportation of natural gas. Based on the drift-flux model and boundary layer theory, a pressure drop prediction model is established. Except for divergent section, a uniform void fraction model is established basing on drift-flux model. The thickness of boundary layer grows rapidly due to the existence of adverse pressure gradient in the divergent section, which results in an increase of the irrecoverable pressure drop. Considering the influence of slip between gas and liquid, weight coefficient is used to adjust the proportion of displacement thickness in the cross section of the Venturi. Compared to experiment, the theoretical model is applied to stratified wavy flow and annular mist flow. For different diameter, the relative deviations of experiment points are within ±15%.  相似文献   

17.
In order to investigate the characteristics of an electromagnetic flowmeter in two-phase flow, an alternating-current electromagnetic flowmeter was designed and manufactured. The signals and noise from the flowmeter under various flow conditions were obtained, and analyzed in comparison with the flow patterns observed with a high-speed charge-coupled device camera.

An experiment with void simulators, in which a rod-shaped non-conducting material was used, was carried out to investigate the effect of bubble position and void fraction on the flowmeter. Two-phase flow experiments, encompassing bubbly to slug flow regimes, were conducted with a water–air mixture.

The simple relation ΔUTPUSP/(1−), relating the flowmeter signal between single-phase flow and two-phase flow, was verified with measurements of the potential difference and the void fraction for a bubbly flow regime. Due to the lack of homogeneity in a real two-phase flow, the discrepancy between the relation and the present measurement increased slightly with increasing void fraction and superficial liquid velocity jf.

Whereas there is no difference in the shape of the raw signal between single-phase flow and bubbly flow, the signal amplitude for bubbly flow is higher than that for single-phase flow at the same water flow rate, since the passage area of the water flow is reduced. In the case of slug flow, the phase and the amplitude of the flowmeter output show dramatically the flow characteristics around each slug bubble and the position of the slug bubble itself. Therefore, the electromagnetic flowmeter shows a good possibility of being useful for identifying the flow regimes.  相似文献   


18.
Ultrasonic tomography techniques provide flow visualization capability, non-invasively and non-intrusively, to enhance the understanding of complex flow processes. There is limited ultrasonic research in tomography imaging systems in the tomogram analysis of fluid flow in a conducting pipe because of a high acoustic impedance mismatch, which means that very little ultrasonic energy can be transmitted through the interface. The majority of industrial pipelines are constructed from metallic composites. Therefore, the development and improvement of ultrasonic measurement methods to accommodate a stainless steel pipe are proposed in this paper. Experimental and simulation distribution studies of the ultrasonic emitting frequency in acrylic versus stainless steel pipes were studied, measured and analyzed. During the simulation, ultrasonic transducers were placed on the surface of the investigated pipe to inspect the ultrasonic sensing field. The distribution of the sound wave acoustic pressure was simulated based on the physical dimensions and parameters of the actual experimental hardware set-up. We developed ultrasonic acoustic models using the finite element method with COMSOL software, and experiments were carried out to validate the simulation results. Finally, by performing the static phantoms tests, a feasibility study of ultrasonic tomography system was presented to investigate the void fraction of liquid column inside a stainless steel pipe.  相似文献   

19.
Flow noise of gas–liquid two-phase flow in horizontal pipeline was detected by using the acoustic emission technique (AE); signals were processed by wavelet transform and chaotic analysis. Conclusions were drawn that stratified flow, annular flow and their transition can be divided clearly through multi-scale energy distribution of flow noise, and that dynamic characteristic of flow pattern transition from stratified flow to annular flow, which is described via correlation dimension, acts in accordance with that of annular flow. The dynamic characteristic of the transition condition has already been consistent with that of the annular flow, but due to the low gas flow rate, the energy of the hydrodynamic noise was not enough to reach the complete annular flow pattern. Results were in accordance with experimental facts. Flow noise reflects the complexity of gas–liquid two-phase flow by means of multi-scale energy distribution and chaotic features. Consequently, flow noise based on acoustic emission is a novel and promising point for researching gas–liquid two-phase flow.  相似文献   

20.
Flow regime is one of the key characteristics of gas-liquid two-phase pipe-flows and its identification is essential for several industrial applications. In this paper, the ultrasonic phased array technology is used to identify flow regimes of two-phase (air-water) vertical flow. The ultrasonic phased array can perform multi-point, omnidirectional detection to obtain high-resolution data suitable for image processing. The scanned images, which have distinctive features, are subjected to a series of image-treatment techniques, such as principle component analysis, to extract information necessary for flow regime identification. The K-nearest neighbors (KNN) classification algorithm is then used to identify flow regimes with high accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号