首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
泥水平衡盾构中,泥浆环流系统是利用管道输送渣浆的系统,主要利用泥浆的流动带走盾构机切削下来的渣土,达到盾构机出渣的目的。盾构机施工时,随着盾构机的掘进,隧道长度逐渐变长,输送泥浆的管道也必须相应延伸,同时管路上阀门、弯头数量也会逐步增多,这也必将导致输送系统的管路压损逐步增加。管路的压力损失直接影响到输送系统渣浆泵扬程的选择。文章从管道直径、流量、渣浆密度,以及阀门、弯头等因素出发,对管路压力损失的影响进行分析,根据计算公式,对整个输送系统的扬程损失进行计算,并根据计算结果最终确定渣浆泵的扬程。在设计沈阳地铁泥水平衡盾构时,根据沈阳地铁施工的地质条件,按文章中的计算方法,得出泥水盾构泥浆环流系统的泵扬程参数,经过与实际施工参数的对比,理论计算数据与实际施工数据基本吻合。  相似文献   

2.
中低比转速离心泵叶轮多目标优化设计   总被引:5,自引:1,他引:5  
中低比转速离心泵效率普遍不高,主要因素是泵的损失过大,在减小泵的损失时,容易使汽蚀余量增大,扬程曲线产生驼峰,为提高泵效率,减少汽蚀余量,消除扬程曲线驼峰,本文论述了以中低比转速泵的能量损失最小,汽蚀余量最小及消除扬程曲线驼峰为多目标函数,以叶轮主要参数为设计变量的泵叶轮优化设计方法,通过优化,获得了满足一定扬程和流量的最优参数组合。  相似文献   

3.
为了了解旋流泵的汽蚀性能,分别以IS150-100-300(LXH)、IS 125-80-230(LXH)为试验对象,对两种型号的旋流泵进行多工况下的汽蚀性能试验研究。结果表明:旋流泵的有效汽蚀余量会在规定的必需汽蚀余量上下波动,这就需要进行多组试验以确保试验的准确性;在汽蚀余量较小时,扬程会有明显的减小,其原因是汽蚀堵塞了流道,导致扬程降低。此外,泵试验时振动现象明显比非汽蚀工况时更为剧烈。  相似文献   

4.
精品展示     
AHR系列渣浆泵特点:该系列泵为卧式、垂直中开、双泵壳结构,泵体和泵盖带有可更换的橡胶内衬,内衬可一直用到磨穿为止,不用更换。用途:主要适用于输送强腐蚀、高浓度渣浆或低浓度、低腐蚀的高扬程渣浆。  相似文献   

5.
文献[2]采用两相流全空化模型计算了离心油泵输送粘油的汽蚀性能,但因缺乏试验数据,故无从知道计算的必需汽蚀余量与其试验值的差别。另外,目前还没有关于利用空化模型预测泵初生空化方面的研究;同时,全空化模型预测离心泵汽蚀性能准确度的评估目前还不多见。因此,本文采用全空化模型预测文献[3,4]的试验离心泵输送水时的汽蚀性能,获得了初生空化系数-流量曲线和扬程-有效汽蚀余量曲线,探讨了泵扬程与叶轮内部汽液体积比的关系以及非凝结气体浓度、紊流模型对扬程-有效汽蚀余量关系曲线的影响。本文的计算方法、经验和结果对实际工程中的离心泵汽蚀性能的预测和流动模型的选择有借鉴作用。  相似文献   

6.
本文对旋流式模型泵进行型式试验及变转速外特性试验,对转速变化引起的性能变化进行了试验研究,得出了泵流量、扬程、轴功率、汽蚀余量及效率变化规律,并对其变化原因进行了分析。对旋流泵变转速相似定律的适用性进行了实验验证,结果证明流量、扬程、轴功率的变化规律服从相似定律,汽蚀余量的变化规律不服从相似定律,而呈相反趋势。  相似文献   

7.
离心式渣浆泵是冶金、矿山、煤炭、电力、建材和化工等部门工艺流程及固体物料管道水力输送设备,适用于输送含有精矿、尾矿、灰、煤渣、泥土和砂砾的流体。该系列渣浆泵规格5.1~30.5cm(2~12in),流量范围32.4~1980m~3/h,扬程范围6~68m。该系列泵根据渣浆流场在不同范围内与清水  相似文献   

8.
高纪平 《水泵技术》1997,(4):47-47,33
渣浆泵选型的普遍弊病是扬程富裕量过大(即扬程偏高)由此引起工况向大流量偏移,运行低效率,并有可能造成汽蚀,抽空,泵和原动机过载等危害,建议渣浆泵扬富裕量采取装置扬程的5%。  相似文献   

9.
节段涡壳式多级渣浆泵,中段采用双涡壳结构,叶轮组对称或非对称对置排列,末级叶轮设置泄压(平衡)孔;核泵在运行初期及后期都能使径向力,轴向力,水力平衡,适用于远距离,高扬程输送渣浆。  相似文献   

10.
李文广 《水泵技术》2012,(6):1-7,21
粘度比水高的粘油会使离心泵的必需汽蚀余量增大,影响其正常运行。粘油的汽蚀余量试验需要特殊的试验装置和试验过程中汽泡不易去除等困难使这方面的试验资料相当稀缺。为此,本文首次采用CFD方法研究了离心泵输送粘油时的汽蚀性能,并与现有的必需汽蚀余量换算系数曲线和试验结果进行了对比。为了确保计算的稳定和准确,叶轮和蜗壳采用了四面体-正六面体混合网格、交错压力差分格式和网格调整技术。获得的扬程-有效汽蚀余量曲线光滑,计算的不同雷诺数下的必需汽蚀余量换算系数与现有的结果吻合。本文对于离心油泵的设计和汽蚀性能计算具有应用价值。  相似文献   

11.
阐述了汽蚀的原理与现象,提出了一种对核电厂用正常余热排出泵进行汽蚀余量仿真研究的数值模拟方法。对水力模型流体区域进行建模,并介绍了模型假设和简化、网格的生成方法、工作介质的物性以及数值模拟仿真计算方法。按ANSI/HI1.6离心泵试验要求进行仿真,通过对各流量点不同进口压力的扬程数据进行拟合计算,获得设计流量点、小流量点和大流量点扬程下降3%时的汽蚀余量NPSH3值。  相似文献   

12.
旋流泵叶轮与无叶腔的相对位置对泵性能影响试验研究   总被引:2,自引:0,他引:2  
著者自行设计制造一台旋流泵,通过试验研究得出了叶轮与无叶腔的相对位置变化对泵扬程、效率、轴功率和汽蚀余量性能的影响规律,并对性能变化的原因进行了探讨。通过对旋流泵实验数据及曲线分析,阐述汽蚀性能特点及汽蚀发生机理。  相似文献   

13.
为确保蜀山泵站的水泵选型合理、泵装置水力性能优异,采用模型试验方法测试了立式混流泵装置在不同叶片安放角时的能量性能、汽蚀性能、飞逸特性,并进行了进水流道的压差测流试验。结果表明:蜀山泵站泵装置模型最高效率为85.30%,对应流量为326.12 L/s、净扬程为11.38 m、叶片安放角为-2°;设计工况叶片安放角为+1°,在此角度下,设计净扬程12.7 m对应的泵装置效率为84.60%、单机流量为43.37 m3/s、临界汽蚀余量为8.9 m,最低净扬程6.7 m对应的泵装置效率为72.47%,最高净扬程14.5 m对应的泵装置效率为81.63%;在最高净扬程14.5 m、叶片安放角-6°时,泵装置原型的最大飞逸转速为电机额定转速的1.91倍。  相似文献   

14.
旋流泵内部流动及吸入性能试验研究   总被引:7,自引:0,他引:7  
通过萝卜水流流动和气水混输观察试验,研究旋流泵流动原理,探讨旋流泵涡室流动模型。通过对液下旋流泵进口直径D0对性能影响的对比试验,确定D0/D2的最佳比值。对旋流泵汽蚀余量曲线及汽蚀对泵扬程的影响与同比转数离心泵进行对比分析,探讨旋流泵汽蚀性能特点。  相似文献   

15.
本文首先对泵的汽蚀特性进行了分析,理论阐述了泵汽蚀产生的机理,定义了泵的汽蚀余量,并进一步建立泵的模型,设置计算条件,采用数值模拟的方法研究了泵的汽蚀特性,揭示汽蚀特性的影响因素及变化规律,为工程项目泵站系统设计应用及避免汽蚀发生提供参考。  相似文献   

16.
诱导轮作为离心泵的重要辅助部件之一,对水泵汽蚀性能的改善有重要作用。针对某大流量离心泵汽蚀性能不佳的问题,采用响应面分析和数值模拟的方式,对该离心泵的诱导轮叶片参数进行了优化,探究了诱导轮导程、叶片厚度和叶片数对大流量离心泵汽蚀性能的影响规律。首先,构建了大流量离心泵的仿真模型,对其进行了外特性计算,将计算结果与试验结果进行了对比,对仿真结果的可靠性进行了验证;然后,根据诱导轮扬程与泵汽蚀性能呈正相关的规律,以诱导轮的叶片参数(导程L、厚度T、叶片数Z)为变量因素,以诱导轮扬程最大为优化目标,对诱导轮进行了响应面计算分析,得到了响应面优化后的诱导轮叶片参数,并对比分析了优化前后诱导轮的扬程;最后,针对诱导轮优化前后的离心泵,在不同工况下进行了叶轮汽蚀情况和临界汽蚀余量对比分析。研究结果表明:叶片导程对诱导轮扬程的影响不大,而减小叶片厚度、增加叶片数可以大幅提高诱导轮扬程;额定工况下,经响应面优化后的诱导轮扬程提高了0.6 m,泵的临界汽蚀余量相比原型泵降低了0.15 m。该结果可以为大流量离心泵诱导轮的优化设计提供理论参考。  相似文献   

17.
雍自珑 《流体机械》2000,28(5):32-34
针对屏蔽泵在液化石油气汽车罐车上应用的特点和要求 ,提出了泵的有效汽蚀余量NPSHR 的计算方法和降低泵的必须汽蚀余量NPSHA 的有效措施 ,并简单介绍了输送液化石油气屏蔽泵的结构特点  相似文献   

18.
赵磊  赵卫星 《水泵技术》2007,(2):8-10,41
驼峰形状管路装置特性曲线的阻力扬程计算方法与一般管路计算方法有所不同。本文提出的就是这种适用于固液两相渣浆介质的“驼峰管路”的装置(阻力)扬程的计算方法与实例。  相似文献   

19.
论述了核电站安全系统中几种主要离心泵,如安注泵、上充泵、余热排出泵、安全壳喷淋泵等在系统中的位置,提出在保证不发生汽蚀的前提下,上述各种泵的汽蚀余量计算方祛。  相似文献   

20.
海上油田离心泵发生汽蚀会降低其增压外输能力并出现振动等现象,分析离心泵产生汽蚀的条件,建立有效汽蚀余量的数学模型,并依据求解结果给出防止离心泵汽蚀的相关措施。结果分析表明,随着泵输油量的不断增大,离心泵有效汽蚀余量逐渐减小,离心泵有效汽蚀余量受甲板层高和管道沿程水力损失的影响较大,而油面高度和油液饱和蒸汽压的影响相对较小;由此需采取降低泵甲板高、减少管件、降低泵座和调整油温等措施,防止离心泵发生汽蚀;离心泵有效汽蚀余量的力学模型充分考虑了油气增压外输流程中的各水力损失,为分析海上油田其他增压泵的汽蚀问题提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号