首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 308 毫秒
1.
The algorithm of gaseous flow in bi-dimensional micro-channels is set up and the corre sponding program based on micro-flow theory is presented. Gaseous flow in micro-channels is numerically analyzed and the pressure drop along the duct as well as the velocity profile in the micro-channels is obtained. The numerical results agreed well with the experimental results in the references. Moreover, the effects of Kn, σv and Re on the velocity profiles are analyzed. It is found that for Kn>0.001, with increasing Kn number, the slip velocity on the wall boundary increases; the tangential momentum coefficient σv affects the slip velocity greatly. The slip velocity increases with decreasing σv In the slip flow regime and for low Re numbers, the slip velocity is little influenced by the Re number.  相似文献   

2.
A three-dimensional turbulent flow through an entire centrifugal pump is simulated using κ-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure fields are obtained for the pump under various working conditions, which is used to predict the head and hydraulic efficiency of the pump, and the results correspond well with the measured values. The calculation results indicate that the pressure is higher on the pressure side than that on the suction side of the blade; The relative velocity on the suction side gradually decreases from the impeller inlet to the outlet, while increases on the pressure side, it finally results in the lower relative velocity on the suction side and the higher one on the pressure side at the impeller outlet; The impeller flow field is asymmetric, i.e. the velocity and pressure fields are totally different among all channels in the impeller; In the volute, the static pressure gradually increases with the flow route, and a large pressure gratitude occurs in the tongue; Secondary flow exists in the rear part of the spiral.  相似文献   

3.
The velocity,pressure and temperature distributions of the flow in the gap between hydro-viscous drive friction disks are the key parameters in the design of hydro-viscous drive and angular velocity controller.In the previous works dealing with the flow in the gap between disks in hydro-viscous drive,few authors considered the effect of Coriolis force on the flow.The object of this work is to investigate the flow with consideration of the effects of centrifugal force,Coriolis force and variable viscosity.A simplified mathematical model based on steady and laminar flow is presented.An approximate solution to the simplified mathematical model is obtained by using the iteration method assuming that the fluid viscosity remains constant.Then the model considering the effect of variable viscosity is solved by means of computational fluid dynamics code FLUENT.Numerical results of the flow are obtained.It is found that radial velocity profile diverges from the ideal parabolic curve due to inertial forces and tangential velocity profile is nonlinear due to Coriolis force,and pressure has two possible solution branches.In addition,it is found that variable viscosity plays an important role on pressure profiles which are significantly different from those of fluid with constant viscosity.The experimental device designed for this work consists of two disks,and one of them is fixed.Experimental pressure and temperature of the flow within test rig are obtained.It is shown that the trend of numerical results is in agreement with that of experimental ones.The research provides a theoretical foundation for hydro-viscous drive design.  相似文献   

4.
The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at present.To reveal inner flow characteristics in double blade pump impeller under off-design and design conditions,inner flows in a double blade pump impeller,whose specific speed is 111,are measured under the five off-design conditions and design condition by using 3D PIV test technology.In order to ensure the accuracy of the 3D PIV test,the external trigger synchronization system which makes use of fiber optic and equivalent calibration method are applied.The 3D PIV relative velocity synthesis procedure is compiled by using Visual C++ 2005.Then absolute velocity distribution and relative velocity distribution in the double blade pump impeller are obtained.Test results show that vortex exists in each condition,but the location,size and velocity of vortex core are different.Average absolute velocity value of impeller outlet increases at first,then decreases,and then increases again with increase of flow rate.Again average relative velocity values under 0.4,0.8,and 1.2 design condition are higher than that under 1.0 design condition,while under 0.6 and 1.4 design condition it is lower.Under low flow rate conditions,radial vectors of absolute velocities at impeller outlet and blade inlet near the pump shaft decrease with increase of flow rate,while that of relative velocities at the suction side near the pump shaft decreases.Radial vectors of absolute velocities and relative velocities change slightly under the two large flow rate conditions.The research results can be applied to instruct the hydraulic optimization design of double blade pumps.  相似文献   

5.
Numerical and Experimental Investigation of High-efficiency Axial-flow Pump   总被引:7,自引:0,他引:7  
The experimental investigation of axial-flow pump has been rapidly developed to meet the needs of South-to-North Water Diversion Project of China. Owing to the boundary conditions of hub, blade tip clearance, much of the physical phenomena and laws involved in this complex flow field can’t be fully determined. The flow characteristics of the high efficiency axial-flow pump have been simulated by RNG k –ε turbulence model and SIMPLEC arithmetic based on FLUENT software. Numerical results indicate that the data from the prediction show agreement with the experimental results, static pressure on pressure side of blades increases slightly at circumferential direction with radius increasing, and keep almost constant at the same radial while increasing gradually from inlet to exit on the suction side along flow direction at design conditions. The static pressure, total pressure and velocity at inlet, impeller outlet and vane outlet were measured by a five-hole probe, and a contrastive experiment was done to investigate the influence of hub leakage. The experimental results show that inlet flow is almost axial and the prerotation is very small at various conditions. The meridional velocity and circulation distribution are almost identical at impeller outlet at design conditions due to steady flow and high efficiency. The residual circulation exits at downstream of the guide vane, and the circumferential velocity component increases linearly from hub to tip at small flow rate conditions. Hub leakage in adjustable blades results in the decrease of the meridional velocity and circulation at blade exit near hub. The results of numerical simulation and experiments supply important flow structure information for the high-efficiency axial-flow pump.  相似文献   

6.
Numerical Research on Performance Prediction for Centrifugal Pumps   总被引:2,自引:0,他引:2  
Performance prediction for centrifugal pumps is now mainly based on numerical calculation and most of the studies merely focus on one model. Therefore, the research results are not representative. To make an improvement of numerical calculation method and performance prediction for centrifugal pumps, performance of six centrifugal pump models at design flow rate and off design flow rates, whose specific speed are different, were simulated by using commercial code FLUENT. The standard k-ε turbulence model and SIMPLEC algorithm were chosen in FLUENT. The simulation was steady and moving reference frame was used to consider the impeller-volute interaction. Also, how to dispose the gap between impeller and volute was presented and the effect of grid number was considered. The characteristic prediction model for centrifugal pumps is established according to the simulation results. The head and efficiency of the six models at different flow rates are predicted and the prediction results are compared with the experiment results in detail. The comparison indicates that the precision of head and efficiency prediction are all less than 5%. The flow analysis indicates that flow change has an important effect on the location and area of low pressure region behind the blade inlet and the direction of velocity at impeller inlet. The study shows that using FLUENT simulation results to predict performance of centrifugal pumps is feasible and accurate. The method can be applied in engineering practice.  相似文献   

7.
A mathematical model is set to evaluate the 3-D dense solid-liquid two-phase turbulent flow in a non-clogging mud pump, the flow feature in the impeller channel is simulated with the tool of IPSA. Meanwhile, resort to TECPLOT as the post-processor, the simulation results is visualized. The results show the main flow characteristics: There exists backflow and aberrant velocities at inlet area and a relative velocity slip between two phases; A jet-wake flow pattern is discerned around the shroud-suction side area; The relative velocity vector of solid phase is closer to the pressure surface than that of liquid phase and the trend is more obvious with the increase of diameter; The kinetic energy of turbulence k and the dissipation rate s reach their peaks at the corner of pressure and suction surface. The simulation results show a good agreement with the experimental flow features in the impeller channel, which prove the turbulent model used is valid and provide a theoretical design basis to non-clogging pu  相似文献   

8.
The flow characteristics and cavitation effects of water passing through small sharp-edged cylindrical orificesand valves of different shapes in water hydraulics are investigated. The test results using orifices with different aspect ratios and different diameters show that the flow coefficients in the case of non-cavitating flow are larger than that of flow inthe case of cavitation occurrence. The flow coefficients of flow with cavitation initially decrease as Reynolds number increases and ultimately tend to be of constant values close to contraction coefficient. Large aspect ratio has an effect ofsuppressing cavitation. The experimental results about disc valves illustrate that the valves with sharp edge at large opening are less affected by cavitation than that at small opening. Throttle with triangle notch has better anti-cavitation abilitythan that with square notch. The flowrate of the throttle with square notch is significantly affected by the flow direction orthe flow passage shape.  相似文献   

9.
Microchannel heat sink with high heat transfer coefficients has been extensively investigated due to its wide application prospective in electronic cooling. However, this cooling system requires a separate pump to drive the fluid transfer, which is uneasy to minimize and reduces their reliability and applicability of the whole system. In order to avoid these problems, valveless piezoelectric pump with fractal-like Y-shape branching tubes is proposed. Fractal-like Y-shape branching tube used in microchannel heat sinks is exploited as no-moving-part valve of the valveless piezoelectric pump. In order to obtain flow characteristics of the pump, the relationship between tube structure and flow rate of the pump is studied. Specifically, the flow resistances of fractal-like Y-shape branching tubes and flow rate of the pump are analyzed by using fractal theory. Then, finite element software is employed to simulate the flow field of the tube, and the relationships between pressure drop and flow rate along merging and dividing flows are obtained. Finally, valveless piezoelectric pumps with fractal-like Y-shape branching tubes with different fractal dimensions of diameter distribution are fabricated, and flow rate experiment is conducted. The experimental results show that the flow rate of the pump increases with the rise of fractal dimension of the tube diameter. When fractal dimension is 3, the maximum flow rate of the valveless pump is 29.16 mL/min under 100 V peak to peak (13 Hz) power supply, which reveals the relationship between flow rate and fractal dimensions of tube diameter distribution. This paper investigates the flow characteristics of valveless piezoelectric pump with fractal-like Y-shape branching tubes, which provides certain references for valveless piezoelectric pump with fractal-like Y-shape branching tubes in application on electronic chip cooling.  相似文献   

10.
Experiments are used to study the fabrication of polymer microfluidic chip with hot embossing method. The pattern fidelity with respect to the process parameters is analyzed. Experiment results show that the relationship between the imprint temperature and the microchannel width is approximately exponential. However, the depth of micro channel isn't sensitive to the imprint temperature. When the imprint pressure is larger than 1 MPa and the imprint time is longer than 2 min, the increasing of imprint pressure and holding time has little impact on the microchannel width. So over long holding time is not needed in hot embossing. Based on the experiment analysis, a series of optimization process parameters is obtained and a fine microfluidic chip is fabricated. The electrophoresis separation experiment are used to verify the microfluidic chip performance after bonding. The results show that 100bp-ladder DNA sample can be separated in less than 5 min successfully.  相似文献   

11.
微注塑成形中壁面滑移对熔体充模流动影响的研究   总被引:1,自引:0,他引:1  
庄俭  王敏杰  于同敏 《中国机械工程》2007,18(16):1995-1999
分析了微尺度下熔体壁面滑移机理,研究了微注塑成形中壁面滑移对熔体充模流动行为的影响。利用有限元方法进行数值模拟,确定了不同特征尺寸微通道中熔体的滑移系数,分析了入口剪切速率和长径比与滑移速度之间的关系。研究结果表明:壁面滑移使熔体速度曲线趋于平滑;当熔体入口速率一定时,其壁面滑移速度随微通道特征尺寸的减小而减小;入口剪切应力相同时,壁面滑移速度随微通道的长径比的增大而增大。  相似文献   

12.
利用正交函数法对定热流密度加热、壁面温度在周向可任意变化条件下,气体在微矩形槽道内的热充分发展滑移流动的换热特性进行理论分析,获得相应条件下的Nu数计算方法及换热特性,并与大尺度槽道的换热特性进行比较,探讨了Kn数、槽道高宽比及不同加热条件对微矩形槽道内滑移流动换热性能的影响。结果表明,在任何加热条件下,微矩形槽道内的平均Nu数均低于相同加热条件下大尺度矩形槽道中的Nu数,且随Kn数的增加而减小。高宽比越小,平均Nu数下降越大。在相同的高宽比和Kn数下,单边加热条件下的换热性能相比相同加热条件的常规大槽道内的换热性能下降最小。  相似文献   

13.
In numerical studies on microscale electroosmotic flows, the electric double layer (EDL) effect is usually predicted by solving the traditional Navier-Stokes equation subjected to the slip velocity induced by the electric-charged wall as a boundary condition. Recently, Suh and Kang (Physical Review E 77, 2008) presented the asymptotic solutions of the ion transport equations near a polarized electrode under the action of an AC field, and then proposed a new theoretical model of the slip velocity on the electrode considering the ion adsorption effect. In the present paper, we apply the model to a two-dimensional AC-electroosmotic flow in a microchannel to calculate the slip velocity on a pair of coplanar asymmetric electrodes embedded on the bottom wall, and then experimentally measure the slip velocity using the micro-PIV technique to validate the theoretical model. Comparison shows an excellent overall match between the theoretical and experimental results, except for on the narrow electrode at low frequencies. Next, we numerically perform parametric studies regarding the AC frequency, effective Stern-layer thickness and ion adsorption effect to further understand the characteristics of the AC electroosmotic flow. Results show that, as the frequency increases, the slip velocity also increases. In addition, the velocity decreases with increasing either Stern-layer thickness or ion adsorption effect. This paper was recommended for publication in revised form by Associate Editor Dongshin Shin Sangmo Kang received a B.S. and M.S. degrees from Seoul National University in 1985 and 1987, respectively, and then had worked for five years in Daewoo Heavy Industries as a field engineer. He also achieved a Ph.D. degree in the field of Mechanical Engineering from the University of Michigan in 1996. Dr. Kang is currently a Professor at the Division of Mechanical Engineering at Dong-A University in Busan, Korea. Dr. Kang’s research interests are in the area of micro- and nanofluidics and turbulent flow combined with the computational fluid dynamics.  相似文献   

14.
为探究分叉微通道内非牛顿流体的流动特性,将非牛顿流体幂律模型引入牛顿流体格子Boltzmann模型,在不同分叉角度矩形截面微通道内数值模拟不同质量分数剪切稀化流体的流动行为;通过分析流动过程中密度随时间的变化趋势以及稳态流动下的密度,得到微通道内压力的分布以及流动区间的压力降;分析溶液质量分数、入口速度与分叉角度对非牛顿流体流动特性的影响,探讨流体特性和微通道几何构型对非牛顿流体流动行为的影响机制。结果表明:分叉角度为90°的微通道内流体的压力降最小,当分叉角度大于90°时,压力降随着分叉角度的增大而减小,当分叉角度小于90°时,压力降随着分叉角度的增大而增大;流体入口速度和流体溶液质量分数增大,压力降均增大;流体溶液质量分数增大使得分叉角度和入口速度对出口处压力降的影响更为显著;微通道内各截面处压力降分布呈抛物线形。  相似文献   

15.
基于Navier滑移的油膜缝隙微流动特性数值分析   总被引:2,自引:1,他引:2  
针对液压系统中微米级油膜缝隙流动内的近壁面滑移微观尺度效应,采用计算流体力学(Computational fluid dynamics,CFD)方法分析壁面滑移作用对微米级油膜缝隙流动规律特性的影响。在对静压支承系统中封油边内油膜缝隙流动进行边界条件处理时,采取了壁面滑移速度与壁面滑移系数和当地局部速度梯度都成正比的Navier滑移模型边界条件。在数值模拟和理论基本吻合的基础上,进一步讨论分析壁面滑移系数对微米级油膜缝隙流动特性的影响,侧重分析考虑壁面表观粘度系数、温粘特性和非牛顿流体属性对微米级油膜缝隙流动特性分布和缝隙壁面滑移速度大小的影响。研究表明在微观尺度下具有界面滑移的油膜缝隙流动区别于无滑移的缝隙流动特性,壁面材料特性系数φ=0.01时,缝隙壁面的滑移速度越大,油膜缝隙流动分布均匀。其温粘特性将最大限度地影响壁面滑移速度大小和缝隙流动特性分布。  相似文献   

16.
For rarefied gas flows in micro-devices, the rarefaction effect becomes significant and the slip at the solid wall becomes an important flow feature. The lattice Boltzmann equation (LBE) method has been used to simulate rarefied gas flows in micro-systems and proved its accuracy in capturing rarefied effect. However, the results of previous studies are not in accordance with each other even though they were started from the same governing equation to solve the same problem, and show only qualitative agreements with those of experimental or analytic approaches. The discrepancies of the results come from the boundary condition and the relation between Knudsennumber and relaxation-time. In this work, the best combination of LBE approach, which employs an equilibrium wall boundary condition and a Knudsen-number-relaxation-time relation derived using the viscosity-based mean free path and mean thermal speed, is suggested. The results of the simulations are compared with the analytic solutions. The present 2D results of microchannel and oscillatory shear-driven gas flows are in excellent agreement with the analytical solution. The results of 3D microchannel flow are also compared with the analytic solutions, and are in good agreement.  相似文献   

17.
微流体广泛应用于生物医学和化工等领域。采用格子Boltzmann方法对T型微通道内气液两相流的流动特性进行研究,分析壁面特性、气液流速和气液流速比等对两相流运动特性的影响。结果表明:壁面接触角越大越容易形成气泡,随着毛细数的增大,分散相脱离点逐渐远离两相入口,形成更长的分层流,不易形成气泡;当气相流速较大,生成气泡的位置远离T型微通道交叉处,分层流的长度增加;不同条件下沿微通道方向压力逐渐减小,在气液两相交汇区域压力存在波动;微通道轴线流速的峰值出现“滞后”现象,速度波动随气液流速比增大而增大;大密度比气液两相流模拟,可以对宏观实验现象的机制进行更深入的解释。  相似文献   

18.
This paper presents an experimental study on the AC electroosmotic flow in a microchannel having a pair of rectangular electrodes on the bottom wall with narrow gap. The microchannel was made of PDMS (Polydimethylsiloxane) and the electrodes of ITO (Indium Tin Oxide). The electrodes were arranged such that the electric field is mainly perpendicular to the channel’s longitudinal direction, thus creating a transversal secondary flow. The primary flow was driven by a pressure force through the fluid-level difference on both reservoirs of the channel. To measure the velocity distributions around the electrodes, we used a micro-PTV (particle tracking velocimetry) technique. We find that on the surface of the electrodes the flow velocity caused by the AC electroosmosis is directed from the electrode edge toward the side wall of the channel, and the maximum crosswise velocity occurs at the frequency 120Hz. A smooth profile of the crosswise velocity component along a vertical line was successfully obtained from the present experimental technique, and it shows a flow reversal due to the mass conservation principle.  相似文献   

19.
为了研究微通道壁面随机粗糙度对流体流动和传质特性的影响,采用随机排布准则构建具有典型粗糙元类型的随机粗糙微通道壁面,利用有限元方法分析壁面随机粗糙度对流速、压降、流动阻力和传质性能的影响,并给出粗糙微通道内部Poiseuille数和分子传质扩散的近似变化规律。结果表明,流体在粗糙微通道近壁面区域和主流区的流速差异较大,近壁面区域流动分离现象明显;与光滑微通道相比,粗糙微通道内部各位置的压降和Poiseuille数沿着流动方向呈近似线性增大趋势;微通道壁面粗糙度的存在可以强化流体分子的传质扩散速率,但受粗糙度类型和相对粗糙度的影响较大。  相似文献   

20.
基于微流控动力学理论,应用有限元分析方法求解二维平板粗糙壁面微流道模型内矩形截面双电层场和速度场的耦合控制方程.从数值模拟角度研究不同矩形粗糙元对称分布微流道内的电渗流流动特性,分析了粗糙度对微流体流动的影响机理.结果表明:由于粗糙元的阻力作用,粗糙壁面流道内流体速度减小,引起的压力突变导致壁面附近速度出现波动.随着粗糙元高度、宽度的增加,电渗流流速相应地降低或升高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号