首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
In the present article, the effect of friction stir welding (FSW) parameters on the weldability and the characteristics of dissimilar weld of aluminum alloys, called AA2024-T4 and AA7075-O are investigated. A number of FSW experiments are carried out to obtain high-quality welds by adjusting the rotational and welding speeds. The weldability and blending of two materials are evaluated by using the macrostructural analysis to observe whether making a notch in a threaded cylindrical tool will lead to a better blend rather than the threaded taper tool or it will have no effects. The mechanical properties of the welds are studied through microhardness distribution and tensile tests. Furthermore, the microstructure analysis is performed to study the influence of the pin profile and the rotational speed on the grain size. Moreover, in the present study, one of the most major goals is to obtain high-quality welds by spending as little expenditure as possible. Therefore, it prevents using complicated and insupportable high welding speed equipments.  相似文献   

2.
In this work, the oscillating arc narrow gap all-position gas metal arc (GMA) welding process was developed to improve efficiency and quality in the welding of thick-walled pipes. The statistical models of narrow gap all-position GMA weld bead geometry were developed using response surface methodology (RSM) based on central composite design (CCD). The developed models were checked for their adequacy and significance by ANOVA, and the effects of wire feed rate, travel speed, dwell time, oscillating amplitude and welding position on weld bead dimension were studied. Finally, the optimal welding parameters at welding positions of 0° to 180° were obtained by numerical optimization using RSM.  相似文献   

3.
AA6061 aluminum alloy has gathered wide acceptance in the fabrication of light weight structures requiring high strength-to-weight ratio and good corrosion resistance. Friction-stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The FSW process and tool parameters play a major role in deciding the joint strength. Joint strength is influenced by grain size and hardness of the weld nugget region. Hence, in this investigation an attempt was made to develop empirical relationships to predict grain size and hardness of weld nugget of friction-stir-welded AA6061 aluminium alloy joints. The empirical relationships are developed by response surface methodology incorporating FSW tool and process parameters. A linear regression relationship was also established between grain size and hardness of the weld nugget of FSW joints.  相似文献   

4.
In the current research, a new method is applied to modify the conventional friction stir welding (FSW) process. Fixture, which fixes the workpieces, is shaken mechanically during FSW in a direction normal to weld line in order to increase the straining of weld region material. In other words, vibration of workpieces is accompanied by the rotating motion of tool. This new process can be described as friction stir vibration welding (FSVW). Al 5052 alloy specimens are welded by two welding methods, FSW and FSVW. Microstructure and mechanical properties of welded specimens are compared. Metallography analyses indicate that grain size decreases and hardness increases as FSVW method is applied. Tensile test results also show that strength and ductility values of friction stir vibration (FSV)-welded specimens are greater than those relating to friction stir (FS)-welded specimens. It is because of more work hardening of plasticized material, during FSVW, which leads to more generation and movement of dislocations. Correspondingly, grain size decreases and mechanical properties improve. Additionally, it is observed that the mechanical properties of the weld improve as vibration frequency increases.  相似文献   

5.
Current work deals with experimental investigation, modeling, and optimization of friction stir welding process (FSW) to reach desirable mechanical properties of aluminum 7075 plates. Main factors of process were tool pin profile, tool rotary speed, welding speed, and welding axial force. Also, main responses were tensile strength, yield strength, and hardness of welded zone. Four factors and five levels of central composite design have been utilized to minimize the number of experimental observations. Then, adaptive neuro-fuzzy inference systems (ANFIS) have been used to generate mapping relationship between process factors and main response using experimental observations. Afterward, the developed models were applied as objective function to select optimal parameters, in which the process reaches to its desirable mechanical properties by using the simulated annealing algorithm. Results indicated that the tool with square pin profile, rotary speed of 1,400 RPM, welding speed of 1.75 mm/s, and axial force of 7.5 KN resulted in desirable mechanical properties in both cases of single response and multi-response optimization. Also, these solutions have been verified by confirmation tests and FSW process physical behavior. These verifications indicated that both ANFIS model and simulated annealing algorithm are appropriate tools for modeling and optimization of process.  相似文献   

6.
In present work, experimental and numerical investigations were carried out on single-point incremental forming of explosive bonded clad sheets. The sheets were produced by explosion welding from 1050 aluminum alloy and C10100 copper alloy sheets. A generatrix of hyperbolic curve was utilized as profile of final shapes formed by SPIF process. During some investigations, the interaction and main effect of the process parameters viz. tool diameter, step down, rotational speed, and sheet arrangement were evaluated on the fracture depth and wall thickness at fracture using ANOVA method. For experimentation, a customized design table was built with three quantify and one qualify factors in two levels. The design table totally provides four input factors and two responses in 12 runs. The responses are fracture depth and wall thickness. A multi-response optimization was conducted to find optimum values for input parameters using response surface methodology (RSM) and the confirmatory experiment revealed the reliability of RSM in this regard. Moreover, predictive models were presented in confidence interval of 95% to formulate the relationship between the responses and the input factors using RSM approach. Additionally, a finite element analysis was carried out on the SPIF based on optimal input parameters to depict reaction force changing, thickness variation, and stress distribution.  相似文献   

7.
A series of welds were made by friction stir welding (FSW) under different welding and rotation speeds. A 2D ultimate tensile strength (UTS) map was developed based on various experimental data to predict the UTS of friction stir welded AA2024 alloy joints. The accuracy of the UTS map was evaluated by comparing the estimated UTS with the corresponding experimental results from the FSW of the same material available in the open literature. Analytical models were developed to estimate the peak temperature and grain size in the nugget zone. The predicted optimal peak temperature and welding and rotation speeds for AA2024 were within the windows of 400–465 °C, 175–350 mm/min and 800–1,200 rpm, respectively, under which the joint tensile strength could be higher than 458 MPa (about 94.6 % of the base metal) and the estimated average grain sizes in the nugget zone were about 2–3.9 μm.  相似文献   

8.
FSW传热过程直接决定工件所经历的热循环,进而影响焊接接头的微观组织和力学性能。同时温度场的分析对于预测接头残余应力和变形,以及焊缝区硬度都具有重要意义。本文在工艺研究基础上,分析了FSW的产热过程;根据搅拌头形状与尺寸,建立了FSW三维传热有限元模型。使用Ansys有限元分析软件,结合有限几个测量点温度变化的实验数据,对6 mm厚度紫铜板FSW焊接过程的温度场进行了有限元分析和计算,获得了该焊接过程的温度场分布与变化规律。计算过程中考虑了工件下表面与支撑板接触热传导对温度场的影响,以及温度对紫铜材料热传导系数的影响,有限元计算结果与实验测量结果接近。  相似文献   

9.
Friction stir welding (FSW) has recently emerged as a solid-joining technology for high-strength aluminum alloys and light metal welding. The large axial force to be maintained between the welding tool and workpiece is the primary requirement of FSW process, which has also been a great obstacle to the design and application of FSW in manufacturing. Further complicating the issue is the need to perform FSW over three-dimensional contours, which requires a mechanism dexterous enough to set the stir pin used in welding to track a predefined trajectory with prescribed poses. Apart from the position specification, the design of a dexterous mechanism to pose the orientation of stir pin is a great challenge. This paper proposed the application of 3-PRS (P, R, and S standing for prismatic, revolute, and spherical joint, respectively) parallel mechanism as a welding tool head and employed it to form a five-axis welding machine tool for FSW. In order to accommodate the orientation capability requirements, the kinematic feature has been analyzed. With the dimensionless treatment of the Jacobian matrix of 3-PRS manipulator, a global condition index is proposed to estimate the kinematic dexterity in the whole orientation workspace. Finally, by means of an optimal design method and performance atlas, optimal designs of the 3-PRS parallel mechanism is carried out. A preferable set of optimized geometric parameters are obtained to achieve a compact and dexterous design, and the optimization results are used in development of a prototype machine for FSW.  相似文献   

10.
In this paper, the effect of friction stir welding (FSW) parameters on wear and deformation behavior of tungsten carbide (WC) tool employed in the welding of AISI 304 austenitic stainless steel (SS) is reported. In addition, the wear and deformation of the tool are also characterized. Three FSW parameters, namely shoulder diameter, tool rpm, and traverse speed each at three levels were considered. Experiments were performed as per Taguchi’s L9 orthogonal array to investigate the effect of these parameters on wear and plastic deformation of the tool. Wear at the pin root and bottom face of the pin attributed to diffusion and attrition mechanisms, respectively, were observed. Significant deformation of the tool was also observed during welding which caused bulging of the shoulder with an increased cone angle of the pin.  相似文献   

11.
The weld properties remain an area of uncertainty with respect to the effect of different speeds of friction stir welding (FSW). For this purpose, hardened steel tool of FSW was used, which consists of the shoulder and pin. The shoulder of the tool not only provides additional heat generated by friction but also prevents plasticized material to escape. In the present investigation, aluminum welds were made at various welding speed using the FSW technique. The welds were characterized for mechanical properties and microstructural investigation. It is observed that good correlation exists between the mechanical properties and welding speeds. The best mechanical properties were obtained at lower welding speed.  相似文献   

12.
Friction stir welding (FSW) of 2219-T6 aluminum alloy assisted by external non-rotational shoulder was carried out, and effects of the welding speed on microstructures and mechanical properties were investigated in detail. Defect-free joints were obtained in a wide range of welding speeds from 50 to 300 mm/min. The microstructural deformation and weld formation were dominated by the rotating tool pin and subsize concave shoulder but the non-rotational shoulder exerted very little effects for all joints. Compared with the weld obtained by conventional FSW, less intense stirring effects in FSW assisted by external non-rotational shoulder can only generate a narrower thermomechanically affected zone, whose width decreased with increasing of the welding speed. Microstructures and Vickers hardness distributions showed that this new welding process is beneficial to improving the asymmetry and inhomogeneity, especially in the weld nugget zone. The maximum tensile strength was up to 69 % of the base material.  相似文献   

13.
In this paper, A6005-T5 extruded aluminum alloy sheets which are used for floor, roof or wall panels of railroad vehicles were welded by the friction stir welding (FSW) and gas metal arc welding (GMAW) techniques. The mechanical characteristics including the tensile strength, micro-hardness and fatigue strength of the FSW joint were compared to those of the base metal and GMAW joints. In order to determine the relationship between the welding variables of FSW and the mechanical characteristics of the joint, the response function was derived using the least square method and the sensitivity analysis was performed. The rotational speed, welding speed and tilting angle of the welding tool were chosen as design variables. On the basis of the Plackett-Burman design table, eight different FSW experiments were done, and then the effects of design variables on the mechanical characteristics of the FSW joint were analyzed. The result showed that the welding speed has a most significant effect on the tensile and fatigue strength. In the case of the micro-hardness, the effect of the tilting angle was the biggest.  相似文献   

14.
In this study, the effect of friction-stir welding (FSW) parameters such as spindle rotational speed, traverse speed, and stirrer geometry on mechanical properties of AA 1050/AA 5083 alloy couples were experimentally investigated. Ultimate tensile strength (UTS) and hardness of welded joints were determined for this purpose. The full-factorial experimental design was conducted to obtain the response measurements. Analysis of variance (ANOVA) and main effect plot were used to determine the significant parameters and set the optimal level for each parameter. A linear regression equation was derived to predict each output characteristic. The experimental and predicted values were in a good agreement with a R 2 of 0.82 and 0.93 for UTS and hardness, respectively.  相似文献   

15.
This study analyzed variations of shear strength that depend on the fiber laser process during micro-spot welding of AISI 304 stainless thin sheets. A preliminary study used ANSYS results to obtain initial process conditions. The experimental plan was based on a Taguchi orthogonal array table. A hybrid method that includes the response surface methodology (RSM)- and back propagation neural network (BPNN)- integrated simulated annealing algorithm (SAA) is proposed to search for an optimal parameter setting of the micro-spot welding process. In addition, an analysis of variance was implemented to identify significant factors influencing the micro-spot welding process parameters, which was also used to compare the results of BPNN-integrated SAA with the RSM approach. The results show that the RSM and BPNN/SAA methods are both effective tools for the optimization of micro-spot welding process parameters. A confirmation experiment was also conducted in order to validate the optimal welding process parameter values.  相似文献   

16.
Underwater friction stir welding (FSW) could widely extend the submarine applications of solid-state welding methods. Since, in the case of underwater FSW, the temperature field exhibits profound effects on the acquired weld properties, studying the corresponding governing parameters is of high priority. With this end in view, in order to explicate the heat generated by the FSW tool, the applied forces on the FSW tool, as the unknown parameters in the heat generation equation, are obtained. Subsequently, the heat transfer of the surrounding fluid, which dictates the heat transfer through the workpiece is investigated. The results reveal that upon comparison to FSW in air medium, both translational and axial forces considerably increase leading to greater heat generated by the underwater FSW tool. However, the peak temperature in each point during underwater welding declines dramatically (40 %) compared to the in-air welding, which can be attributed to the extreme boiling heat transfer of water on both the workpiece and FSW tool. This behavior may be the main reason for the acquired mechanical properties of the underwater-welded AA7075-T6 plates as a precipitating hardening alloy. The mentioned heat transfer is non-uniform over the workpiece and comprises different types including nucleation and transition boiling as well as free convection. Furthermore, the study of the mechanical characteristics revealed that underwater welding leads to joints with more strength and lower ductility compared to those obtained by in-air welding.  相似文献   

17.
Reverse dual-rotation friction stir welding (RDR-FSW) is a novel FSW technology in which the tool pin and the assisted shoulder rotates reversely, thus it has the capability to obtain appropriate welding conditions through adjusting the rotating tool pin and surrounding assisted shoulder independently. In the present study, a RDR-FSW tool system was designed and successfully applied to weld high strength aluminum alloy 2219-T6, and the effects of welding speed on microstructures and mechanical properties were investigated in detail. At a constant rotation speed of 800 rpm for both the rotating tool pin and the reversely rotating assisted shoulder, defect-free joints were obtained at welding speeds ranging from 50 to 150 mm/min, while a cavity defect appeared at the three-phase confluction on the advancing side when the welding speed increased to 200 mm/min. With increasing of the welding speed, the width of the softened region decreased, but the minimum microhardness value increased gradually. When compared with the joints welded by the conventional FSW, there is only a minor variation of the Vickers hardness across the stirring zone in the joint welded by the RDR-FSW. The maximum tensile strength 328 MPa (73.7 % of the base material) was obtained at the welding speed of 150 mm/min, while the elongation reached its maximum 7.0 % (60.9 % of the base material) at the welding speed of 100 mm/min. All defect-free joints were fractured at the weakest region with the minimum Vickers hardness, while for the joint with cavity defects the fracture occurred at the defect location. The tensile fracture was in the ductile fracture mode.  相似文献   

18.

Peak temperature arising during the joining of metals by friction stir welding (FSW) needs to be investigated along with other process parameters of FSW to understand their inevitable impact on joint quality. This investigational and experimental analysis aims to determine the impact of pin geometry and its rotational speed by formulating thermic mechanical process-based models to anticipate peak temperature and to compare it with actual values. Three distinctive pin geometries rotated at three speeds were used while other parameters were unchanged. The fitness and suitability of the model were verified by comparing the anticipated values with the experimental values. Macrographic and micrographic observations revealed that flawless joints with improved mechanical properties were fabricated at a peak temperature of 616 K (80 % melting temperature) when a taper cylindrical pin with a rotational speed of 818 rpm was employed. In addition, SEM analysis of the fractured specimen confirmed that failure of the defect free weldment occurred in brittle mode, indicating that preferred fusion of grains and their constituents occurred during the joining process.

  相似文献   

19.
T2纯铜快速冷却搅拌摩擦焊缝微观组织和力学性能研究   总被引:1,自引:0,他引:1  
由于焊后余热带来的退火软化效应,T2纯铜常规搅拌摩擦焊(Friction stir welding,FSW)焊缝通常会出现位错密度降低和晶粒长大的现象,其屈服强度普遍较低。为消除焊后退火效应并改善力学性能,采用液态CO2同步快速冷却FSW工艺对2 mm的T2纯铜进行焊接。利用光学显微镜、电子背散射衍射、透射电子显微镜、显微硬度测试以及拉伸试验对焊缝的微观组织、力学性能和加工硬化行为进行研究。结果表明,纯铜FSW焊缝的晶粒细化机制主要为不连续动态再结晶、连续动态再结晶和孪晶诱导几何动态再结晶。快速冷却FSW纯铜焊缝呈现具有纳米孪晶和高位错密度的细晶结构,在加工硬化第Ⅲ阶段表现出较大的加工硬化率。在第Ⅳ阶段,纳米孪晶为位错增殖提供储存空间,使加工硬化率降低并改善塑性。和常规FSW相比,快速冷却FSW焊缝的屈服强度和断后伸长率分别提高了31.1%和25.7%。本文提出的液态CO2同步快速冷却FSW工艺通过改善焊接热循环可在焊缝中制备异质细晶结构,有助于提高焊缝的屈服强度并使其表现出良好的强塑性匹配。  相似文献   

20.
This research investigates the relationship between the microstructures of thermomechanically affected zone (TMAZ) and heat input in friction stir welding (FSW) of 5086 aluminum alloy. First, welding heat input has been predicted using a three-dimensional finite element analysis; then, welding experiments have been carried out on annealed and work-hardened conditions to study the developed microstructures and the mechanical properties of the welded metal. The results show that the temperature field in the FSW process is asymmetrically distributed with respect to the welding line. Also, both experimental and predicted data illustrates that peak temperatures are higher on the advancing side than the retreating side. In addition, the microstructures are strongly affected by the heat input, while the grain size within the TMAZ decreases with decreasing heat input per unit length during FSW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号