首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
This paper investigated the influence of three micro electrodischarge milling process parameters, which were feed rate, capacitance, and voltage. The response variables were average surface roughness (R a ), maximum peak-to-valley roughness height (R y ), tool wear ratio (TWR), and material removal rate (MRR). Statistical models of these output responses were developed using three-level full factorial design of experiment. The developed models were used for multiple-response optimization by desirability function approach to obtain minimum R a , R y , TWR, and maximum MRR. Maximum desirability was found to be 88%. The optimized values of R a , R y , TWR, and MRR were 0.04, 0.34 μm, 0.044, and 0.08 mg min?1, respectively for 4.79 μm s?1 feed rate, 0.1 nF capacitance, and 80 V voltage. Optimized machining parameters were used in verification experiments, where the responses were found very close to the predicted values.  相似文献   

2.
In this study, models for predicting the surface roughness of AISI 1040 steel material using artificial neural networks (ANN) and multiple regression (MRM) are developed. The models are optimized using cutting parameters as input and corresponding surface roughness values as output. Cutting parameters considered in this study include cutting speed, feed rate, depth of cut, and nose radius. Surface roughness is characterized by the mean (R a) and total (R t) of the recorded roughness values at different locations on the surface. A total of 81 different experiments were performed, each with a different setting of the cutting parameters, and the corresponding R a and R t values for each case are measured. Input–output pairs obtained through these 81 experiments are used to train an ANN is achieved at the 200,00th epoch. Mean squared error of 0.002917120% achieved using the developed ANN outperforms error rates reported in earlier studies and can also be considered admissible for real-time deployment of the developed ANN algorithm for robust prediction of the surface roughness in industrial settings.  相似文献   

3.
Most of the theoretical models for surface roughness in finish turning assume that the work piece surface profile is formed by the rounded tip of the tool nose. The effect of the straight flank section in the tool nose region on the surface roughness is usually neglected. In this work, the straight flank section is taken into account in order to predict the arithmetic average roughness R a and root-mean-square roughness R q more accurately. The analytical models for R a and R q are developed as a function of three parameters, namely feed rate, nose radius, and wedge angle. These models were verified using digital simulation method. The surface roughness determined using the new three-parameter models were compared with the existing two-parameter models that consider only the feed rate and nose radius. Decreasing wedge angle was found to lower the surface roughness significantly. An experiment was conducted to test the validity of the three-parameter model at different feed rates in real machining operation. The experimental results agreed more closely with the proposed three-parameter models compared to the two-parameter models.  相似文献   

4.
An experimental investigation was conducted to analyze the effect of cutting parameters (cutting speed, feed rate and depth of cut) and workpiece hardness on surface roughness and cutting force components. The finish hard turning of AISI 52100 steel with coated Al2O3 + TiC mixed ceramic cutting tools was studied. The planning of experiment were based on Taguchi’s L27 orthogonal array. The response table and analysis of variance (ANOVA) have allowed to check the validity of linear regression model and to determine the significant parameters affecting the surface roughness and cutting forces. The statistical analysis reveals that the feed rate, workpiece hardness and cutting speed have significant effects in reducing the surface roughness; whereas the depth of cut, workpiece hardness and feed rate are observed to have a statistically significant impact on the cutting force components than the cutting speed. Consequently, empirical models were developed to correlate the cutting parameters and workpiece hardness with surface roughness and cutting forces. The optimum machining conditions to produce the lowest surface roughness with minimal cutting force components under these experimental conditions were searched using desirability function approach for multiple response factors optimization. Finally, confirmation experiments were performed to verify the pertinence of the developed empirical models.  相似文献   

5.
Conventional grinding of silicon substrates results in poor surface quality unless they are machined in ductile mode on expensive ultra-precision machine tools. However, precision grinding can be used to generate massive ductile surfaces on silicon so that the polishing time can be reduced immensely and surface quality improved. However, precision grinding has to be planned with reliability in advance and the process has to be performed with high rates of reproducibility. Therefore, this work reports the empirical models developed for surface parameters R a, R max, and R t with precision grinding parameters, depths of cut, feed rates, and spindle speeds using conventional numerical control machine tools with Box–Behnken design. Second-order models are developed for the surface parameters in relation to the grinding parameters. Analysis of variance is used to show the parameters as well as their interactions that influence the roughness models. The models are capable of navigating the design space. Also, the results show large amounts of ductile streaks at depth of cut of 20?μm, feed rate of 6.25?mm/min, and spindle speed of 70,000?rpm with a 43-nm R a. Optimization experiments by desirability function generate 37-nm R a, 400-nm R max, and 880-nm R t with massive ductile surfaces.  相似文献   

6.
The measurement of roughness on machined metal surfaces is of considerable importance to manufacturing industries as the roughness of a surface has a significant influence on its quality and function of products. In this paper, an experimental approach for surface roughness measurement has been based on the comparison of roughness values taken from the stylus and optical type instruments on the machined metal surfaces (turning, grinding and milling) is presented.Following this experimental study, all measured surface roughness parameters have been analyzed by using Statistical Package for Social Science (SPSS 15.0) statistically and mathematical models for the two most important and commonly used roughness parameters Ra and Rz have been developed so that Ra = Ra (F, P, C) and Rz = Rz (F, P, C, M), whereas F expresses feed, P periodicity, C contrast and M the type of material. The statistical results from numerous tests showed that there has been a correlation between the surface roughness and the properties of the surface topography and there have been slight differences among three measurement instruments on machined metal surfaces in this experimental study.  相似文献   

7.
This paper presents an experimental investigation of the influence of cutting conditions on surface finish during turning of Al/SiC-MMC. In this study, the Taguchi method, a powerful tool for experiment design,is used to optimise cutting parameters for effective turning of Al/SiC-MMC using a fixed rhombic tooling system. An orthogonal L27(313) array is used for 33 factorial design and analysis of variance (ANOVA) is employed to investigate the influence of cutting speed, feed and depth of cut on the surface roughness height R a and R t respectively. The influence of the interaction of cutting speed/feed on the surface roughness height R a and R t and the effect of cutting speed on cutting speed/feed two factor cell total interaction for surface roughness height R a and R t are analysed through various graphical representations. Taking significant cutting parameters into consideration and using multiple linear-regression, mathematical models relating to surface roughness height R a and R t are established to investigate the influence of cutting parameters during turning of Al/SiC-MMC. Confirmation test results established the fact that the mathematical models are appropriate for effectively representing machining performance criteria, e.g. surface roughness heights during turning of Al/SiC-MMC.  相似文献   

8.
9.
We applied combined response surface methodology (RSM) and Taguchi methodology (TM) to determine optimum parameters for minimum surface roughness (Ra) and vibration (Vb) in external cylindrical grinding. First, an experiment was conducted in a CNC cylindrical grinding machine. The TM using L 27 orthogonal array was applied to the design of the experiment. The three input parameters were workpiece revolution, feed rate and depth of cut; the outputs were vibrations and surface roughness. Second, to minimize wheel vibration and surface roughness, two optimized models were developed using computer-aided single-objective optimization. The experimental and statistical results revealed that the most significant grinding parameter for surface roughness and vibration is workpiece revolution followed by the depth of cut. The predicted values and measured values were fairly close, which indicates (R Ra 2 =94.99 and R Vb 2 =92.73) that the developed models can be effectively used to predict surface roughness and vibration in the grinding. The established model for determination of optimal operating conditions shows that a hybrid approach can lead to success of a robust process.  相似文献   

10.
Abrasive flow machining (AFM) is a multivariable finishing process which finds its use in difficult to finish surfaces on difficult to finish materials. Near accurate prediction of generated surface by this process could be very useful for the practicing engineers. Conventionally, regression models are used for such prediction. This paper presents the use of artificial neural networks (ANN) for modeling and simulation of response characteristics during AFM process in finishing of Al/SiCp metal matrix composites (MMCs) components. A generalized back-propagation neural network with five inputs, four outputs, and one hidden layer is designed. Based upon the experimental data of the effects of AFM process parameters, e.g., abrasive mesh size, number of finishing cycles, extrusion pressure, percentage of abrasive concentration, and media viscosity grade, on performance characteristics, e.g., arithmetic mean value of surface roughness (R a, micrometers), maximum peak–valley surface roughness height (R t, micrometers), improvement in R a (i.e., ΔR a), and improvement in R t (i.e., ΔR t), the networks are trained for finishing of Al/SiCp-MMC cylindrical components. ANN models are compared with multivariable regression analysis models, and their prediction accuracy is experimentally validated.  相似文献   

11.
The objective of this study was to investigate the influence of heat treatment parameters, namely temperature and exposure time on surface roughness, shear strength, hardness and density of Southern pine (Pinus echinata) and aspen (Populus grandidentata) samples. The specimens were exposed to two different temperature levels of 120–200 °C for time spans of 2–8 h. A stylus type portable profilometer was employed to evaluate the surface characteristics of the samples by taking measurements across the grain orientation. Average roughness (Ra), mean peak-to-valley height (Rz) and maximum roughness (Rmax) were used to evaluate surface roughness of the samples exposed to various heat treatment schedules. Comten testing unit was also used to determine shear strength and Janka hardness of the control and heat treated specimens. Based on the results of this study Southern pine samples had more enhanced surface quality but lower hardness values than those of aspen specimens with increased temperature and time of heat treatment schedules. It was found that heat treatment adversely affected hardness and shear strength properties of all types of samples. Reduction in shear strength values of Southern pine and aspen samples ranged from 23.31% to 68.59% and from 4.67% to 48.55%, respectively as compared to those of control samples. It appears that influence of heat treatment on all properties of the samples was more pronounced with increasing temperature and exposure time.  相似文献   

12.
The attempt of this paper is to present an effective approach for the optimization of the shot peening process of welded AISI 304 austenitic stainless steel with multi performance characteristics using Grey relational analysis (GRA) based on Taguchi orthogonal array. Twenty-seven experimental runs are performed to determine best process parameters level. An analysis of variance (ANOVA) is carried out to identify significant peening parameters. The response tables are obtained for analyzing the optimal levels of shot peening parameters and major factors that affect the quality function. The multiple performance characteristics including tensile strength, surface hardness and surface roughness are the quality functions considered for the optimization. Further mathematical models are developed using regression analysis for the tensile strength, surface hardness and surface roughness. It will be very helpful to the engineers in deciding the levels of the shot peening parameters for desired performance characteristics.  相似文献   

13.
This paper focused on optimizing the cutting conditions for the average surface roughness (Ra) obtained in machining of high-alloy white cast iron (Ni-Hard) at two different hardness levels (50 HRC and 62 HRC). Machining experiments were performed at the CNC lathe using ceramic and cubic boron nitride (CBN) cutting tools on Ni-Hard materials. Cutting speed, feed rate and depth of cut were chosen as the cutting parameters. Taguchi L18 orthogonal array was used to design of experiment. Optimal cutting conditions was determined using the signal-to-noise (S/N) ratio which was calculated for Ra according to the “the-smaller-the-better” approach. The effects of the cutting parameters and tool materials on surface roughness were evaluated by the analysis of variance. The statistical analysis indicated that the parameters that have the biggest effect on Ra for Ni-Hard materials with 50 HRC and 62 HRC are the cutting speed and feed rate, respectively. Additionally, the optimum cutting conditions for the materials with 50 HRC and 62 HRC was found at different levels.  相似文献   

14.
M. Sedlaček  B. Podgornik  J. Vižintin 《Wear》2009,266(3-4):482-487
The aim of the present research was to investigate influence of surface preparation on roughness parameters and correlation between roughness parameters and friction and wear. First the correlation between different surface preparation techniques and roughness parameters was investigated. For this purpose 100Cr6 steel plate samples were prepared in terms of different average surface roughness, using different grades of grinding, polishing, turning and milling. Different surface preparation techniques resulted in different Ra values from 0.02 to 7 μm. After this, correlation between surface roughness parameters and friction and wear was investigated. For this reason dry and lubricated pin-on-disc tests, using different contact conditions, were carried out, where Al2O3 ball was used as counter-body. It was observed that parameters Rku, Rsk, Rpk and Rvk tend to have influence on coefficient of friction.  相似文献   

15.
This paper is focused on the identification of a relation between surface hardening and roughness induced by ultrasonic shot peening. A method that dissociates the influence of roughness from the value of the true macroscopic hardness is applied to AISI 316L stainless steel specimens treated using different processing conditions. The true macroscopic hardness is identified and used to determine the surface roughness parameter and scale that give the best relation between hardness and roughness. A relation is identified between the five point pit height S5V roughness parameter (local depth of roughness) and hardness using a high-pass filter with a cut-off of 100 µm. This power function was identified at a scale that corresponds to the size of the shot impacts.  相似文献   

16.
In the past, roughness values measured directly on machined surfaces were used to develop mathematical models that are used in predicting surface roughness in turning. This approach is slow and tedious because of the large number of workpieces required to obtain the roughness data. In this study, 2-D images of cutting tools were used to generate simulated workpieces from which surface roughness and dimensional deviation data were determined. Compared to existing vision-based methods that use features extracted from a real workpiece to represent roughness parameters, in the proposed method, only simulated profiles of the workpiece are needed to obtain the roughness data. The average surface roughness R a, as well as dimensional deviation data extracted from the simulated profiles for various feed rates, depths of cut, and cutting speeds were used as the output of response surface methodology (RSM) models. The predictions of the models were verified experimentally using data obtained from measurements made on the real workpieces using conventional methods, i.e., surface roughness tester and a micrometer, and good correlation between the two methods was observed.  相似文献   

17.
Surface roughness of the workpiece is an important parameter in machining technology. Wiper inserts have emerged as a significantly class of cutting tools, which are increasingly being utilized in last years. This study considers the influence of the wiper inserts when compared with conventional inserts on the surface roughness obtained in turning. Experimental studies were carried out for the carbon steel AISI 1045 because of its great application in manufacturing industry. Surface roughness is represented by different amplitude parameters (Ra, RzD, R3z, Rq, Rt, Ra/Rq, Rq/Rt, Ra/Rt). With wiper inserts and high feed rate it is possible to obtain machined surfaces with Ra < 0.8 μm (micron). Consequently it is possible to get surface quality in workpiece of mechanics precision without cylindrical grinding operations.  相似文献   

18.
This paper provides a new methodology for the integrated optimization of cutting parameters and tool path generation (TPG) based on the development of prediction models for surface roughness and machining time in ultraprecision raster milling (UPRM). The proposed methodology simultaneously optimizes the cutting feed rate, the path interval, and the entry distance in the feed direction to achieve the best surface quality in a given machining time. Cutting tests are designed to verify the integrated optimization methodology. The experimental results show that, in the fabrication of plane surface, the changing of entry distance improves surface finish about 40 nm (R a ) and 200 nm (R t ) in vertical cutting and decreases about 8 nm (R a ) and 35 nm (R t ) in horizontal cutting with less than 2 s spending extra machining time. The optimal shift ratio decreases surface roughness about 7 nm (R a ) and 26 nm (R t ) in the fabrication of cylinder surfaces, while the total machining time only increases 2.5 s. This infers that the integrated optimization methodology contributes to improve surface quality without decreasing the machining efficiency in ultraprecision milling process.  相似文献   

19.
This paper presents the mathematical modelling and parametric optimization on flank wear and surface roughness based on response surface methodology and grey-based Taguchi method in finish hard turning of AISI 4340 steel (HRC 47 ± 1) using multilayer coated carbide (TiN/TiCN/Al2O3/TiN) insert under dry environment. The economical feasibility of utilizing multilayer TiN coated carbide insert has been described. Model adequacy has been checked using correlation coefficients. From main effect, it is evident that, cutting speed is the most significant factor for flank wear followed by depth of cut and feed. Again, feed is the most significant factor for surface roughness followed by cutting speed and depth of cut. The coefficient of determination (R2) is more than 75% for RSM models developed, which shows the high correlation exist between the experimental and predicted values. The experimental vs. predicted values of flank wear and surface roughness (Ra and Rz) are also found to be very close to each other implying significance of models developed. The improvement of grey relational grade from initial parameter combination (d2–f3–v4) to the optimal parameter combination (d1–f1–v3) is found to be 0.3093 using grey relational analysis coupled with Taguchi method for simultaneous optimization of responses. Flank wear (VBc) and surface roughness parameters (Ra and Rz) are decreased 1.9, 2.32 and 1.5 times respectively considering optimal parametric combinations for multi-responses. The calculated total machining cost per part is only Rs. 3.17 due to higher tool life (47 min at their optimal level) of multilayer TiN coated carbide insert. It brings to the reduction of downtime and increases the savings.  相似文献   

20.
With the advance of contemporary technology, high precision surface finishing techniques for optical glasses are of great concern and developing to meet the requirements of the effective industrialized processes. Not only the used tools but also process parameters have great influence on the surface roughness improvements. In this paper, surface roughness improvement of Zerodur optical glass using an innovative rotary abrasive fluid multi-jet polishing process has been presented. For the same purpose, a tool for executing ultra precision polishing was designed and manufactured. Taguchi's experimental approach, an L18 orthogonal array was employed to obtain the optimal process parameters. ANOVA analysis has also been carried out to determine the significant factors. It was observed that about a 98.33% improvement on surface roughness from (Ra) 0.360 μm to (Ra) 0.006 μm has been achieved. The experimental results show that a surface finished achieved can satisfy the requirements for optical-quality surface (Ra < 12 nm). In addition, the influence of significant factors on surface roughness improvement has been discussed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号