首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dilution effect of air stream according to agent type on flame structure and NO emission behaviour is numerically analysed with detailed chemistry. The adopted fuel is hydrogen diluted with the argon of volume percentage 50 per cent and the volume percentage of diluents (H2O, CO2 and N2) in air stream is systematically changed from 10 to 50. The radiative heat loss term, based on an optically thin model, is included to clearly describe the flame structure and NO emission behaviour, especially at low strain rates. The effect of dilution of air stream on the decrease of maximum flame temperature varies as CO2>H2O>N2. The qualitative tendency of the numerically predicted mole fractions of H, O and OH is well described using a simplified formula, based on a partial equilibrium concept. It is seen that the H2O addition to air stream is the most effective for reducing NO emission. In the case of the addition of H2O and N2 the NO emission behaviour is governed by the thermal effect and in the case of CO2 addition it is governed by both the thermal effect and the chemical effect. But the chemical effect, which is mainly attributed by the Fenimore mechanism to the breakdown of CO2, is much more predominant in comparison with the thermal effect. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Numerical analysis on flame structure in a counterflow diffusion flame has been conducted for understanding the effects of CO2 addition to fuel, systematically varying initial concentration of CO2 and axial velocity gradient. The effects of CO2 addition to fuel side in a counterflow diffusion flame are globally divided into two categories: diluent effects due to the relative reduction in the concentrations of the reactive species, and direct chemical effects caused by the breakdown of CO2 through the reactions of third‐body collision and thermal dissociation. The deflection of CO2 mole fraction profile with mixture fraction clarifies that the converted CO quantity from CO2 is not negligible at low axial velocity gradients. It is also known that the addition of CO2 does not alter the basic skeleton of the H2–O2 reaction mechanism, but contributes to the formation and destruction of hydrocarbon products such as HCO. At high axial velocity gradients the CO converted reaction is suppressed and then CO2 plays the role of a diluent at these conditions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
The radiation effect on flame temperature and NO emission of H2-lean (0.2H2 + 0.8CO) and H2-rich (0.8H2 + 0.2CO) syngas/air counterflow diffusion flames was numerically investigated using OPPDIF code incorporated with the optical thin model, statistical narrow band model and adiabatic condition. Firstly, the coupled effect of strain rate and radiation was studied. Disparate tendencies of NO emission with an increasing strain rate between H2-lean and H2-rich syngas flames were found at very small strain rate, and the effect of radiation reabsorption on NO formation can be neglected when the strain rate was greater than 100 s?1 for both H2-lean and H2-rich syngas flames. Because the radiation effect is vital to flames with small strain rate, its impact on flame temperature and NO emission was investigated in detail at a strain rate of 10 s?1. The results indicated that NO formation is more sensitive to radiation reabsorption than flame temperature, especially for the H2-rich syngas flame. The underlying mechanism was discovered by using reaction pathway analysis. Furthermore, the radiation effect under CO2 dilution of the syngas fuel was examined. It was demonstrated that the radiation effect on flame temperature became more prominent with the increase of CO2 concentration for both H2-lean and H2-rich syngas. The radiation effect on NO emission increased first and then decreased with an increasing CO2 content for H2-lean syngas, whereas for H2-rich syngas the radiation effect is monotonic.  相似文献   

4.
5.
Numerical simulation with detailed chemistry has been carried out to clearly discriminate the thermal and chemical contributions of added diluents (H2O and CO2) to major flame structures and NO emission characteristics in H2/N2 counterflow diffusion flame. The pertinence of GRI, Miller–Bowman, and their recent modified mechanisms are estimated for the combined fuel of H2, CO2, and N2. A virtual species X, which displaces the individual CO2 and H2O in the fuel sides, is introduced to separate chemical effects from thermal effects. In the case of H2O addition the chain branching reaction, H + O2 → O + OH is considerably augmented in comparison with that in the case of CO2 addition. It is also seen that there exists a chemically super‐adiabatic effect in flame temperature due to the breakdown of H2O. The reaction path of CH2O→CH2OH→CH3 and the C1‐branch reactions become predominant due to the breakdown of CO2. In NO emission behaviour super‐equilibrium effects caused by the surplus chain carrier radicals due to the breakdown of added H2O are more superior to the enhanced effects of prompt NO with the breakdown of added CO2. Especially, it is noted that thermal NO emission is directly influenced by the chemical super‐equilibrium effects of chain carrier radicals in the case of H2O addition. As a result the overall NO emission in the case of the addition of H2O is higher than that in the case of CO2 addition. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
The objectives of the present study are to measure NOx emission of counterflow diffusion flame, to compare the findings with numerical results, and finally to demonstrate efficacious effect of high-temperature air with low concentration of oxygen on NOx emission. Recently, high-temperature air with low concentration of oxygen is used for various industrial furnaces, resulting high efficiency and low emission of pollutants. Since high-temperature air increases NOx emission and air with low concentration of oxygen decreases it, these effects are competitive. Measurement and computation were conducted to clarify these two effects by use of counterflow diffusion flame. Since it is difficult to employ very high temperature over 1100 K in a laboratory-scale apparatus, a quantitative agreement between experimental and numerical results was confirmed first, and then a numerical approach was used to obtain a larger effect of low oxygen to reduce NOx emission. In the experiments, the methane concentration is changed from 10 to 30 vol% diluted by nitrogen, oxygen from 10 to 21 vol%, and air temperature from room temperature to 1100 K. The total amount of NOx sufficiently agreed between experimental and numerical results, although NO and NO2 could not be separated. By the numerical method, it was found that NOx emission from the counterflow diffusion flame of high-temperature low-oxygen air of 1500 K and 5% oxygen is comparable with that of room-temperature air of 21% oxygen.  相似文献   

7.
A narrowband radiation model is coupled to the OPPDIF program, which uses detailed chemical kinetics and thermal and transport properties to enable the study of one-dimensional counterflow H2/O2 diffusion flames with CO2 as dilution gas over the entire range of flammable strain rates. The effects of carbon dioxide dilution, ambient pressure and inlet temperature of opposed jets on the extinction limits and flame structures are compared and discussed. The extinction limits are presented using maximum flame temperature and strain rate as coordinates. Both high-stretch blowoff and the low-stretch quenching limits are computed. When the CO2 dilution percentage is higher, the flame is thinner and flame temperature is lower. The combustible range of strain rates is decreased with increasing CO2 percentage due to the effects of CO2 dilution, which is categorized as dilute effect, chemical effect and radiation effect. In addition, the flame temperature of low-stretch diffusion flame with radiation loss is substantially lower than that computed with the non-radiation model. This large temperature drop results from the combined effect of flame radiation and chemical kinetics. The extinction limits and flame temperature are increasing with increasing atmospheric pressure and temperature, but the flame thickness is decreased with the pressure. At higher pressure and temperature, the extinction limits are extended more on the high-stretch blowoff limits, indicating the influence of the ambient pressure and temperature on the chemical reaction.  相似文献   

8.
Numerical simulation of CO2 addition effects to fuel and oxidizer streams on flame structure has been conducted with detailed chemistry in H2–O2 diffusion flames of a counterflow configuration. An artificial species, which displaces added CO2 in the fuel- and oxidizer-sides and has the same thermochemical, transport, and radiation properties to that of added CO2, is introduced to extract pure chemical effects in flame structure. Chemical effects due to thermal dissociation of added CO2 causes the reduction flame temperature in addition to some thermal effects. The reason why flame temperature due to chemical effects is larger in cases of CO2 addition to oxidizer stream is well explained though a defined characteristic strain rate. The produced CO is responsible for the reaction, CO2+H=CO+OH and takes its origin from chemical effects due to thermal dissociation. It is also found that the behavior of produced CO mole fraction is closely related to added CO2 mole fraction, maximum H mole fraction and its position, and maximum flame temperature and its position. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The dilution effect of air stream according to agent type on flame structure and NO emission behaviour is numerically simulated with detailed chemistry in CH4/air counterflow diffusion flame. The volume percentage of diluents (H2O, CO2, and N2) in air stream is systematically changed from 0 to 10. The radiative heat loss term, based on an optically thin model, is included to clearly describe the flame structure and NO emission behaviour especially at low strain rates. The effect of dilution of air stream on the decrease of maximum flame temperature varies as CO2>H2O>N2, even if heat capacity of H2O is the highest. It is also found that the addition of CO2 shows the tendency towards the reduction of flame temperature in both the thermal and chemical sides, while the addition of H2O enhances the reaction chemically and restrains it thermally due to a super‐equilibrium effect of the chain carrier radicals caused by the breakdown of H2O in high‐temperature region. The comparison of the nitrogen chemical reaction pathway between the cases of the addition of CO2 and H2O clearly displays that the addition of CO2 is much more effective to reduce NO emission. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Numerical study is conducted to grasp flame characteristics in H2/CO syngas counterflow diffusion flames diluted with He and Ar. An effective fuel Lewis number, applicable to premixed burning regime and even to moderately stretched diffusion flames, is suggested through the comparison among fuel Lewis number, effective Lewis number, and effective fuel Lewis number. Flame characteristics with and without the suppression of the diffusivities of H, H2, and He are compared in order to clarify the important role of preferential diffusion effects through them. It is found that the scarcity of H and He in reaction zone increases flame temperature whereas that of H2 deteriorates flame temperature. Impact of preferential diffusion of H, H2, and He in flame characteristics is also addressed to reaction pathways for the purpose of displaying chemical effects.  相似文献   

11.
Numerical study on flame structure and NO emission behaviour has been conducted to grasp chemical effects of added H2O on either fuel‐ or oxidizer‐side in CH4–O2–N2 counterflow diffusion flames. An artificial species, which has the same thermodynamic, transport, and radiation properties of added H2O, is introduced to feasibly isolate the chemical effects. Special concern is focused on the important role of remarkably produced OH radicals due to chemical effects of added H2O on flame structure and NO emission. The reason why the difference of behaviours between the principal chain branching reaction rate and flame temperature appear is attributed to the drastic change of reaction step (R120) from the production to the consumption of OH. It is also, however, seen that the most important contribution of produced OH due to chemical effects of added H2O is through reaction step (R127). The importantly contributing reaction steps to NO production are also examined. The production rates of thermal NO and prompt NO are suppressed by chemical effects of added H2O. The contribution of the reaction steps related to HNO intermediate species to the production of prompt NO is also stressed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
For the combustion of the mixture of blast furnace gas, natural gas, and coke oven gas in industrial burners, how to improve combustion efficiency and reduce pollutant emission are of significance. To accomplish this, an industrial partially premixed burner with a combustion diagnostic system is used to experimentally reveal the characteristics and NOX emission of H2/CH4/CO/air flame under CO2, N2, and CO2/N2 (replacing half of N2 with CO2) dilution. NOX emission and flame length, temperature profile, along with CO, CH4, and CO2 concentration profiles are analyzed with the three diluents in the fuel stream under different dilution rates (0–32% by volume). Experimental results show that for lean H2/CH4/CO combustion, greater proportions of CO2 in the diluent affect flame characteristics in various ways. These effects include longer flame length, lower highest flame temperature, the highest flame temperature being located farther away from the nozzle, and the highest CO2 concentration being located nearer the nozzle. Furthermore, results of CO, CH4, and CO2 concentrations indicate that chemical reactions in the flame are significantly affected by CO2 owing to the series reaction CH4?CH3→CO?CO2. Finally, increasing diluents or the ratio of CO2 in diluents has the benefit of reducing NOX emission.  相似文献   

13.
Experiments in low-strain-rate methane-air counterflow diffusion flames diluted with nitrogen have been conducted to study flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss, in addition to radiative loss, could be high at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate and nitrogen mole fraction in the fuel stream or in terms of fuel Lewis number. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations, which result from the advancing and retreating edge flame motion of the outer flame edge of low-strain-rate flames, are categorized into three modes: a growing, a decaying, and a harmonic-oscillation mode. A flame stability map based on the flame oscillation modes is also provided for low-strain-rate flames. The important contribution of lateral heat loss even to edge flame oscillation is clarified finally.  相似文献   

14.
The growing concern about pollutant emissions and depletion of fossil fuels has been a strong motivator for the development of cleaner and more efficient combustion strategies, such as the gasification of coal, biomass or waste, which have increased the interest in using a new type of fuels, mainly composed of CH4, H2, CO and CO2.These new fuels, commonly called syngas, display a wide range of compositions, which affects their combustion characteristics and, in some cases, are more prone to instabilities or flashback. Since flame properties have been demonstrated to be strongly related to equivalence ratio, a precise measurement of the flame stoichiometry is a key pre-requisite for combustion optimization and prevention of unstable regimes. In particular, chemiluminescence emission from flames has been largely tested for stoichiometry monitoring for methane flames, but its use in syngas flames has been far less studied. Consequently, the main goal of this work is analyzing the effect of fuel composition on the chemiluminescence vs. equivalence ratio curves for different fuel blends, as a first approach for a wide range of syngas compositions. The experimental results revealed that the ratio OH*/CH*, which had been widely demonstrated to be the best option for methane, may not be suitable for monitoring with certain fuels, such as those with a high percent of hydrogen. Alternatively, other signals, in particular the ratio OH*/CO2*, appear as viable stoichiometry indicators in those cases.The analysis was also completed by numerical predictions with CHEMKIN. The comparisons of calculations with different flame models and experimental data reveals differences in the chemiluminescence vs. equivalence ratio curves for the different combustion regimes, depending on the range of the equivalence ratio ranges and fuel compositions. This finding, which confirms previous observations for a much narrower range of fuels, could have important practical consequences for the application of the technique in real combustors.  相似文献   

15.
Numerical study is conducted to clarify preferential diffusion effects of H2 and H on flame characteristics in synthetic diffusion flames of the compositions of 80% H2/20% CO and 20% H2/80% CO as representatively H2-enriched and CO-enriched H2/CO flames. Impacts of CO2 addition to the flames are also examined through the variation of added CO2 mole fraction from 0 to 0.5. A comparison was made by employing a mixture-averaged diffusivity and the suppression of the diffusivities of H and H2. It is found that preferential diffusion effects on maximum flame temperature cannot be explained by the well-known behavior between maximum flame temperature and scalar dissipation rate but by chemical processes. The concrete evidence is also presented through the examination of the behavior of maximum H mole fraction and the behavior of importantly-contributing reaction steps to overall heat release rate.  相似文献   

16.
We propose a simple technique to measure particle temperatures in a particle generating counterflow flame. The silica particle temperature was derived from flame light emission measurements. This technique allows the non-intrusive measurement of particle temperatures over 2000 K. In addition, the OH concentration distribution in the hydrogen–oxygen flame was estimated from flame emission spectra in the ultraviolet region. A numerical model of the combustion processes, which included the reactions of SiCl4 leading to the formation of silica particles, verified that the measured particle temperatures and OH concentration were close to the theoretical values.  相似文献   

17.
The different effects of N2 and water steam dilution on the NO emission from a micromix H2/air flame were experimentally and numerically studied. NO emission was measured using Fourier transform infrared spectroscopy gas analyzer (FTIR). Numerical simulation of the H2/air flame was carried out with realizable k-ε model and the Eddy Dissipation Concept (EDC) model. Two pseudo species were introduced in the simulations to numerically isolate the thermal-dilution, direct chemical and third-body effect of the steam. The experimental and numerical results show that NO emission with steam dilution is about 20%~50% of the emission with N2 dilution at the same equivalence ratio (φ) and dilution ratio (D). The present simulation results show that the thermal-dilution and direct chemical effects of steam account for 50.8%~92.1% and 5.8%~15.8% of the total NO emission, respectively, while the third-body effect of steam shows less impact on NO emission. Specifically, the third-body effect slightly promotes the formation of H and NO at lower φ (0.6–0.8) and suppresses the formation of H and NO at higher φ (0.9–1.0) through inhibiting the third-body reaction of H + O2 + M ? HO2 + M. In addition, the direct chemical and third-body effects of steam always decrease the formation of NO from the NNH route.  相似文献   

18.
The dynamics of a soot aerosol in a stagnation point diffusion flame have been simulated numerically. The impact of the flow velocity gradient on soot loading which was observed experimentally was found to arise simply from variations in aerosol residence times; the computed effect was consistent with constant particle formation and growth rates. The aerosol size distribution adopted a self-preserving form following the particle inception stage in spite of intense gas to solid conversion by surface growth; the inclusion of a retarded van der Waals interaction did not give rise to significant differences in the moments of the size distribution.  相似文献   

19.
To understand the fundamental mechanisms of NO formation in natural gas-diesel dual fuel combustion, a numerical study on NO formation in laminar counterflow methane (CH4)/n-heptane (n-C7H16) dual fuel flames is conducted. The results reveal that the flame structure and NO formation vary with the fuel equivalence ratio. For a given n-C7H16/air mixture, the NO emission index decreases with increasing the equivalence ratio of the CH4/air mixture (φ(CH4/air)). The NO formation route analysis suggests that the prompt and thermal routes dominate the NO formation. The increase in φ(CH4/air) causes the decrease in the contribution of the prompt route to overall NO formation. NO formation by prompt route is mainly caused by rich n-C7H16 combustion. As φ(CH4/air) increases, the mole fractions of the radicals (OH, O and H) related to CH formation in the reaction zone of rich n-C7H16/air flame branch are decreased, which reduces the formation of NO by prompt route.  相似文献   

20.
The thermal and emission characteristics of a swirl-stabilized turbulent inverse diffusion flame (IDF) burning liquefied petroleum gas (LPG) were studied experimentally and the results of visible flame lengths, flame temperatures, in-flame gaseous species concentrations and global pollutant emissions were reported.The flame shape and length of the swirling IDF and a non-swirling IDF were compared. The swirling IDF is featured by a large internal recirculation zone (IRZ), which plays an important role in stabilizing and shortening the flame. Compared with the non-swirling IDF, the swirling IDF is shorter, wider and more stable. For the swirling IDF, both temperature and species distributions are uniform in the IRZ. Comparison of the radial NOx/temperature distributions indicates that the thermal NO mechanism plays a leading role in NOx formation, since the high-temperature IRZ favors thermal NO production. The effects of air jet Reynolds number (Re) and overall equivalence ratio (Ф) on centerline temperature and emission index were examined. The main finding is that the IRZ which is large in size and high in temperature dominates the thermal and emission characteristics of the swirling flame.Efforts were made to compare the global NOx and CO emissions of the swirling and non-swirling IDFs. It was found that strong swirl and lean combustion are two key factors for reducing NOx emission. However, the decreasing NOx emission is compromised by increasing CO. Under stoichiometric and rich conditions, EINOx of the swirling IDFs is slightly higher, but the EICO is significantly lower. Further comparison of EINOx with other studies indicates that the swirling IDF can achieve low NOx emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号