首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
金属工艺   1篇
建筑科学   4篇
  2022年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
排序方式: 共有5条查询结果,搜索用时 11 毫秒
1
1.
李志  黄小艳  熊春宝  聂东清 《表面技术》2022,51(5):186-197, 233
目的 针对海底管道长期腐蚀损伤的随机性、多态性等问题,研究不同服役年限的海底管道腐蚀损伤分布特性及演化规律。方法 提出了一种基于混合分布模型的海底管道腐蚀特性分析方法,该方法以老龄海底管道腐蚀损伤实测数据为基础,通过对不同服役年限下的海底管道腐蚀损伤特征进行统计分析,确定出海底管道腐蚀损伤的最佳分布模型,建立基于混合分布模型海底管道腐蚀损伤随机过程模型。进一步使用ARIMA方法对模型参数进行持续修正,并对管道腐蚀损伤进行预测。结果 不同服役时间下的腐蚀损伤最佳分布不同,Weibull、Gumbel及Gamma分布模型均具有较好的拟合优度,且各分布模型随服役时间的增长呈现出不同的变化趋势,相应分布模型参数呈现出动态变化。结合ARIMA模型修正方法,充分利用实测数据能够不断降低模型的不确定性。结论 海底管道的腐蚀损伤具有明显的多态性和随机性特征,很难采用单一分布模型对管道腐蚀损伤数据进行普遍性描述,既有的腐蚀损伤模型存在一定的不确定性及局限性,而基于混合分布模型的分析方法更能准确地反映海底管道长期腐蚀损伤的实际分布规律。  相似文献   
2.
基坑悬臂排桩支护局部失效引发连续破坏机理研究   总被引:1,自引:0,他引:1  
虽然已有很多基坑连续倒塌破坏的工程案例,局部破坏可能导致的连续垮塌规模和造成的后果也越来越大,但是由局部破坏发展为大规模连续破坏的机理还少有研究,也缺乏针对基坑连续破坏的控制方法和设计理论。以排桩支护的长条形基坑为例,采用显式有限差分法、离散元法及模型试验对局部支护结构失效情况下的基坑进行了模拟,对基坑土压力的重分布和支护结构受力的变化规律进行了分析和相互对比验证,初步揭示了连续破坏在基坑长度方向上的传递机理,提出了荷载传递系数的概念,即临近破坏第一根桩内力的提高倍数,并发现其是决定基坑是否发生连续破坏的重要因素。土体强度越高,荷载传递系数越高。在局部破坏发生之后很短时间内,未破坏部位土压力和结构受力迅速升高达到最大值。排桩顶设置的连续冠梁可以降低传递系数,对提高基坑支护结构抗连续破坏能力有重要作用。  相似文献   
3.
大长度基坑发生了一些沿长度方向上由局部破坏引发数10 m至100 m以上的连续破坏事故,然而基坑连续破坏的发生及终止机理却少有研究。设计了悬臂排桩支护基坑局部支护桩破坏倒塌的模型试验,对局部破坏引发的土压力和支护结构内力变化等规律等进行了研究,在此基础上进行了局部破坏引发支护桩连续破坏的试验。结果表明,基坑局部垮塌会引起邻近桩的土压力和桩身内力瞬间增大,随后坑外土体滑塌进基坑内,造成邻近支护结构主动区卸载,但此卸荷过程相对滞后。当局部垮塌引发的荷载传递系数大于邻近桩的承载力安全系数时,将会导致基坑连续破坏。连续破坏发生后,随着破坏范围增大,土体滑塌引发的卸荷使得土拱效应不足以继续导致支护桩出现破坏时,连续破坏将自然终止。试验还表明,在一定局部破坏长度范围内,局部垮塌长度越大,荷载传递系数和影响范围越大;围护桩嵌固深度越小,即支护桩抗侧移刚度越低时,荷载传递系数越小,但局部破坏影响范围较大。  相似文献   
4.
软土地区深基坑往往需要对被动区土体进行水泥土搅拌加固,以减小基坑变形。而坑底加固土与围护桩之间存在的缝隙需要通过压密注浆加固。以上海地区某基坑为背景,采用有限差分法建立了三维数值计算模型。将数值计算结果与实测进行了对比,验证数值计算模型的合理性。计算结果表明,桩间缝隙注浆加固对基坑围护桩位移的影响可占到被动区加固总影响量的24%。围护桩位移随着注浆加固体的弹性模量、粘聚力、内摩擦角的增加而减小,且减小幅度逐渐降低。粘聚力在10kPa以下时,对围护桩位移影响不大,而当粘聚力继续增加,围护桩位移随着粘聚力增加而快速减小。内摩擦角变化对围护桩位移影响显著大于弹性模量及粘聚力。  相似文献   
5.
对大面积基坑,条件适当时采用多级支护可以取消水平支撑,目前已经有一些应用。而针对多级支护工作机理的研究却相对较少。进行了大型模型试验,研究了两级支护间土体水平距离B及第二级支护桩桩长L_2这两个主要参数对多级支护变形、受力及破坏模式的影响。根据B的不同,多级支护存在整体式、关联式和分离式三种破坏模式,3种破坏模式的主要区别在于破坏面的范围及两级支护间土体的应力状态不同。第一级桩的桩顶位移及桩身弯矩分别随B的增加而减小,基坑稳定性增加。而L_2的增加会导致第二级桩转变为主要受力结构,即第二级桩承受更大的弯矩,两级桩桩身弯矩分配更加均匀,L_2的增加同样有利于减小第一级桩桩顶位移。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号