首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
金属工艺   1篇
建筑科学   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
Although crack inspection is a routine practice in civil infrastructure management (especially for highway bridge structures), it is time‐consuming and safety‐concerning to trained engineers and costly to the stakeholders. To automate this in the near future, the algorithmic challenge at the onset is to detect and localize cracks in imagery data with complex scenes. The rise of deep learning (DL) sheds light on overcoming this challenge through learning from imagery big data. However, how to exploit DL techniques is yet to be fully explored. One primary component of practical crack inspection is that it is not merely detection via visual recognition. To evaluate the potential risk of structural failure, it entails quantitative characterization, which usually includes crack width measurement. To further facilitate the automation of machine‐vision‐based concrete crack inspection, this article proposes a DL‐enabled quantitative crack width measurement method. In the detection and mapping phase, dual‐scale convolutional neural networks are designed to detect cracks in complex scene images with validated high accuracy. Subsequently, a novel crack width estimation method based on the use of Zernike moment operator is further developed for thin cracks. The experimental results based on a laboratory loading test agree well with the direct measurements, which substantiates the effectiveness of the proposed method for quantitative crack detection.  相似文献   
2.
As intelligent sensing and sensor network systems have made progress and low‐cost online structural health monitoring has become possible and widely implemented, large quantities of highly heterogeneous data can be acquired during the monitoring. This has resulted in exceeding the capacity of traditional data analytics techniques, especially in monitoring large‐scale or critical civil structures. In particular, data storage has become a big challenge, hence, resulting in the emergence of data compression and reconstruction as a new area in structural health monitoring (SHM) of large infrastructure systems. SHM data generally include anomalies that can disturb structural analysis and assessment. The fundamental reasons for the abnormality of data are extremely complex. Therefore, reconstruction of the abnormal data is generally difficult and poses serious challenges to achieve high‐accuracy after data has been compressed. Considering these significant challenges, in this paper, a novel deep‐learning‐enabled data compression and reconstruction framework is proposed that can be divided into two phases: (a) a one‐dimensional Convolutional Neural Network (CNN) that extracts features directly from the input signals is designed to detect abnormal data with validated high accuracy; (b) a new SHM data compression and reconstruction method based on Autoencoder structure is further developed, which can recover the data with high‐accuracy under such a low compression ratio. To validate the proposed approach, acceleration data from the SHM system of a long‐span bridge in China are employed. In the abnormal data detection phase, the results show that the proposed method can detect anomaly with high accuracy. Subsequently, smaller reconstruction errors can be achieved even by using only 10% compression ratio for the normal data.  相似文献   
3.
植入物的表面修饰对于获得生物相容性或功能性界面非常重要。本项研究中, 钛金属表面的MgO薄膜在400?C进行溶胶-凝胶化,观察其微观结构、生物活性、抗菌性能和细胞毒性。结果发现,MgO在空气中老化后转化为Mg(OH)2。扫描电镜观察薄膜无裂纹。在模拟体液试验中显示出良好的生物活性,与成骨细胞有良好的相容性,对大肠杆菌有轻微的抗菌作用。MgO薄膜在钛金属生物医学植入物表面改性中具有潜在的应用前景。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号