In the context of human-robot and robot-robot interactions, the better cooperation can be achieved by predicting the other party’s subsequent actions based on the current action of the other party. The time duration for adjustment is not sufficient provided by short term forecasting models to robots. A longer duration can by achieved by mid-term forecasting. But the mid-term forecasting models introduce the previous errors into the follow-up forecasting and amplified gradually, eventually invalidating the forecasting. A new mid-term forecasting with error suppression based on restricted Boltzmann machine(RBM) is proposed in this paper. The proposed model can suppress the error amplification by replacing the previous inputs with their features, which are retrieved by a deep belief network(DBN). Furthermore, a new mechanism is proposed to decide whether the forecasting result is accepted or not. The model is evaluated with several datasets. The reported experiments demonstrate the superior performance of the proposed model compared to the state-of-the-art approaches.
Comparative experiments are performed in friction stir welding (FSW) of dissimilar Al/Mg alloys with and without assistance of ultrasonic vibration. Metallographic characterization of the welds at transverse cross sections reveals that ultrasonic vibration induces differences in plastic material flow in two conditions. In FSW, the plastic material in the peripheral area of shoulder-affected zone (SAZ) tends to flow downward because of the weakening of the driving force of the shoulder, and a plastic material insulation layer is formed at the SAZ edge. When ultrasonic vibration is exerted, the stirred zone is divided into the inner and outer shear layers, the downward material flow trend of the inner shear layer disappears and tends to flow upward, and the onion-ring structure caused by the swirl motion is avoided in the pin-affected zone. By improving the flow behavior of plastic materials in the stirred zone, ultrasonic vibration reduces the heat generation, accelerates the heat dissipation in nugget zone and changes the thermal cycles, thus inhibiting the formation of intermetallic compound layers.
Neural Processing Letters - Online sequential extreme learning machine (OS-ELM) is one of the most popular real-time learning strategy for feedforward neural networks with single hidden layer due... 相似文献
Bioglass (BG) possesses excellent bioactivity and has been widely used in the manufacture of biomaterials. In this study, a composite with different surface bioactivity was fabricated via in situ melting polymerization by incorporating BG and poly(amino acid) (PAA) at a suitable ratio. The structure of the composite was characterized by Fourier transform infrared spectroscopy and XRD. The compressive strength of the BG/PAA composites was 139 MPa (BG:PAA = 30:70). The BG/PAA composites were degradable, and higher BG in composite showed higher weight loss after 4 weeks of incubation in simulated body fluid. In addition, the BG/PAA composite maintained adequate residual compressive strength during the degradation period. The SEM results showed the differences in surface bioactivities of the composites directly, and 30BG/PAA composite showed thicker apatite layer and higher Ca/p than 15BG/PAA. in vitro MG-63 cell culture experiments showed that the composite was noncytotoxic and thus allows cells to adhere, proliferate, and differentiate. This indicates that the composite has good biocompatibility. The implantations in the bone defects of rabbits for 4 and 12 weeks were studied. The composites had good biocompatibility and were capable of guiding new bone formation without causing any inflammation. The composite may be successfully used in the development of bone implants. 相似文献
Being a new kind of nanomaterials, aromatic polyamide nanofibers (ANF) have been much highlighted in recent studies. We here demonstrate an isopropyl alcohol (IPA) accelerated chemical cleavage on poly (p-phenylene terephthalamide) chopped fibers, which provides an efficient preparation method of ANF. The comprehensive study on the processes accelerated by different alcohols revealed that the preparation time of ANF in the mixed medium of dimethyl sulfoxide (DMSO)-alcohol (20:1 in volume) was shorten to 45 min and 75 min for methanol (ethanol) and isopropanol, respectively. However, the nanofibers prepared in DMSO-IPA exhibited the minimum in axial and radial dimensions, providing the finest and most uniform diameter of 16 nm. The corresponding ANF films through vacuum assisted filtration also showed the highest tensile strength of 150 MPa, in comparison with those of the ANF films prepared using other alcohols, which were about 110 MPa. Furthermore, ANF/silicon hybrid films were prepared by the ionic ring-opening reaction followed by the alkoxysilane condensation and nanoparticle fabrication. By changing the organo functional groups in the alkoxysilane, the surface of the films were adjustable in a wide contact angle range from 56° (hydrophilic) to 150° (superhydrophobic), suggesting the amendable interfacial properties potential applicable to composite fabrication with most of the resin matrix. 相似文献
Wireless Personal Communications - With the rapid development of information technology, issues such as network security and privacy protection have attracted more and more attention. The... 相似文献