首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   28篇
  国内免费   1篇
综合类   2篇
化学工业   61篇
金属工艺   17篇
机械仪表   2篇
矿业工程   12篇
能源动力   11篇
轻工业   2篇
武器工业   2篇
无线电   3篇
一般工业技术   21篇
冶金工业   38篇
原子能技术   3篇
自动化技术   1篇
  2024年   1篇
  2023年   31篇
  2022年   22篇
  2021年   13篇
  2020年   17篇
  2019年   8篇
  2018年   8篇
  2017年   10篇
  2016年   12篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2003年   5篇
  2002年   2篇
  1999年   2篇
  1995年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
排序方式: 共有175条查询结果,搜索用时 31 毫秒
1.
We report a simple route to synthesize iron carbide/carbon yolk–shell composite via a facile two-step process including polymerization of pyrrole using Fe3O4 as a sacrificial template to form a Fe3O4/polypyrrole composite, followed by annealing at high temperature in N2 atmosphere. The yolk–shell composite, with iron carbide (Fe2.5C) embedded in nitrogen-doped carbon layers, shows impressively high catalytic activity and stability for oxygen reduction reaction in alkaline solution. Both the pyridinic-N and graphic-N in the shell of Fe3O4–PPy-700, together with the Fe2.5C confined in carbon layers are believed to be the active sites for the ORR.  相似文献   
2.
根据国家对绿色冶金的倡导,对如何高效无污染回收含锌电炉粉尘中的金属锌及K、Na元素进行研究,采用水浸预处理回收粉尘中K、Na元素,再进行真空碳热还原回收金属锌。试验结果表明,水浸最佳方案为固液比为1∶10(g/ml)、搅拌速度为300 r/min、水浸时间为70 min。此条件下,K元素浸出率达91.09%,Na元素浸出率达85.68%。通过FactSage 8.0软件模拟真空碳热还原电炉粉尘在不同含碳条件下热力学行为,并结合前期探索试验表明,水浸渣添加质量分数为10%的焦炭、还原温度为950 ℃、保温时间为60 min的条件下进行真空碳热还原试验可有效分离Fe、Zn元素,获得金属锌锭(Zn质量分数为98.15%)及高品质铁精粉(Fe质量分数为61.93%)。  相似文献   
3.
By conducting the numerical and experimental analysis, the influence of heat input on the microstructures and mechanical properties of laser welding GH4169 bolt assembly is systematically investigated. The weld formation, temperature field, and residual stress distribution during laser welding by using the finite element modeling are consistent with experimental results. The numerical simulation results show that the increase of heat input imparts lower residual stresses and higher temperature gradient. During the process of laser welding, the steepest temperature gradient and the peak residual stress arise in the fusion zone (FZ). In addition, the dissolution of γ″ and γ′ toward the fusion line increases in heat affected zone (HAZ), but only Laves phase is observed in FZ. With increasing heat input from 24 to 48 J mm−1, the ultimate tensile strength of welded joints decreases. Both the lowest microhardness values and tensile failure of GH4169 alloy laser welded joint are in FZ. Herein, it is that the relationship among the heat input, microstructures, and mechanical properties of GH4196 bolt assembly in laser welding is systematically established, which will be of guiding significance for the selection of welding parameters in aerospace.  相似文献   
4.
The formation of mono-vacancy, vacancy clusters and hydrogen-vacancy complexes with 30 keV H ion-irradiated pure titanium at different doses and temperatures was measured using by Positron annihilation spectroscopy (PAS). Results show a large number of HmVn clusters and vacancy-like defects in the samples irradiated at for room temperature, and that the formation of HmVn (m > n) at the sample irradiated at a high dose inhibits the increase of the S parameter. At increased irradiation temperature, the shrinkage of vacancy clusters and the effective open volume of defects decrease the S parameters. The high-temperature irradiation results in decreased vacancy-type defect concentration, and some hydrogen atoms diffuse from the cascade region to the track region, forming a large number of hydrogen-vacancy complexes in the track region. The coincidence Doppler broadening spectroscopy, an element analysis method, used to detect hydrogen in the ion-irradiated pure titanium sample, and results show hydrogen-related peaks in the high-momentum region, which may be due to the information of positron annihilation in the covalent bond formed by the H and the Ti elements. The increased radiation dose and temperature contribute to the formation of the hydrogen vacancy-complex, and the positron annihilation in high-momentum regions easily obtain hydrogen-related information.  相似文献   
5.
 为了提高国内油井管钢质量,采用扫描电镜对比了日本和国内油井管钢中夹杂物成分和形貌,统计了夹杂物尺寸分布、夹杂物间距和夹杂物分布等参数,基于FactSage热力学软件平衡凝固模型分析了冷却过程中夹杂物的演变过程,基于夹杂物碰撞数量平衡模型,讨论了油井管钢中夹杂物碰撞率。结果表明,日本油井管钢中夹杂物主要为CaS包裹的镁铝尖晶石,国内油井管钢中夹杂物主要为钙铝酸盐包裹的镁铝尖晶石夹杂物和纯镁铝尖晶石夹杂物。日本油井管钢夹杂物比国内油井管钢夹杂物数量少、尺寸小、分布更均匀。日本油井管钢中夹杂物数量密度达到7.5个/mm2,国内油井管钢中夹杂物数量密度达到28.3个/mm2。日本油井管钢中夹杂物最大尺寸不超过5 μm,国内油井管钢中夹杂物最大尺寸达到20 μm。FactSage计算冷却过程中夹杂物演变结果与试验结果吻合。国内油井管钢中夹杂物碰撞率比日本油井管钢中夹杂物的碰撞率高2个数量级。  相似文献   
6.
Ethylene‐octene elastomer (POE)/organo‐montmorillonite (OMT) and maleic anhydride‐grafted POE (POE‐g‐MAH)/OMT composites were prepared through melt mixing and influence of clay dispersion on thermal, dynamic mechanical, and flammability properties were investigated. The results showed that OMT forms intercalated/exfoliated structures in POE‐g‐MAH/OMT and agglomerated structure in POE/OMT microcomposites, resulting in more significant improvements of storage modulus and glass transition temperature in the POE‐g‐MAH/OMT rather than the POE/OMT composites. The POE‐g‐MAH/OMT nanocomposites have better thermal stability and significantly reduced flammability than the POE/OMT microcomposites, which was discussed on the basis of cone colorimeter test of the composites and energy dispersive X‐ray spectrum analysis of the combustion chars. POLYM. ENG. SCI., 54:2911–2917, 2014. © 2014 Society of Plastics Engineers  相似文献   
7.
《Ceramics International》2023,49(18):29433-29448
Stable slurries for Si3N4-bonded SiC refractories for direct ink writing (DIW) were successfully prepared from a mixture of non-spherical silicon carbide (SiC) and silicon (Si) powders with an average particle size of D50 = 41.98 μm. The rheological properties and printability of slurries prepared using polyvinyl alcohol (PVA; 4–16 wt %) or hydroxypropyl methylcellulose (HPMC, 0.5–2 wt.%) were investigated with the effect of sintering temperature on the mechanical performance, phase, and microstructure of Si3N4-bonded SiC refractory products. The results indicated that slurries prepared with the HPMC solution showed better printability than those prepared with the PVA solution because colloidal films formed by HPMC in slurries play a role in encasing particles, preventing solid−liquid separation and contributing to plasticity and lubrication, which guarantees the smooth extrusion and homogeneity of slurries. The successful printing of SiC–Si slurries is not only related to proper viscosity, yield value, and shear thinning characteristics but it is also crucial for maintaining the homogeneity of slurries under extrusion pressure. Optimal SiC–Si slurries containing 52 vol % SiC–Si and 1.5 wt% HPMC exhibited proper viscosity, shear thinning, and homogeneity characteristics during printing. The obtained specimens achieved the best printing performance with height and section retention rates of 98.7% and 97.6%, respectively. When sintered at 1450 °C, Si3N4 fibres grow further and reach a diameter of 342.5 nm, the nitriding rate is 92.43%, the fibres tend to form a full network structure, and the mechanical properties of Si3N4-bonded SiC products are the best.  相似文献   
8.
《Acta Materialia》2003,51(7):1971-1979
Zr48Nb8Cu14Ni12Be18 bulk metallic glass (BMG) with excellent glass-forming ability was prepared by water quenching method. The BMG exhibits high glass transition temperature Tg and onset crystallization temperature Tx, compared with Zr41Ti14Cu12.5Ni10Be22.5 BMG. The crystallization processes, change of elastic constants, and density and hardness in the crystallization process were studied by using X-ray diffraction, differential scanning calorimetry and acoustic method. The shear modulus, Poisson ratio, density and hardness are found to be sensitive to the crystallization process. A striking softening of long-wavelength transverse acoustic phonons in the BMG relative to its crystallized state is observed. The linear expansion coefficient, determined by a dilatometer method, is αTG=1.04×10−5 K1 (300–656 K) for the BMG and αTC=1.11×10−5 K−1 (356–890 K) for the crystalline alloy. The Mie potential function and the equation of state of the BMG are determined from the expansion coefficient and acoustic experiments.  相似文献   
9.
《Journal of power sources》2002,112(2):419-427
A detailed characterization of the structural modifications and redox processes occurring upon lithium deintercalation from the Lix0Co1−yMgyO2 materials (x0=1.0 and 1.10; y=0.0, 0.03, 0.05 and 0.06) was performed in order to determine the effect of Mg doping on the cycling properties. Using electrochemical tests, X-ray diffraction (XRD), 7Li MAS NMR and electrical properties measurements, we show that the LixCo1−yMgyO2 system exhibits a solid solution existing in the whole deintercalation range studied (0.30≤×≤1.0). These phases exhibit reversible capacities equivalent to that of LiCoO2 upon cycling with a good structural stability. Moreover, the 7Li MAS NMR study shows that the structural defects (O vacancies and intermediate spin Co3+ ions) which are present in the starting Mg-doped phases govern the electronic properties upon lithium deintercalation. Indeed, regardless of the presence of Mg ions in the structure, a behavior similar to that of the LixCoO2 (1<x0≤1.08) system is evidenced with an insulator to metal transition taking place at the microscopic scale.  相似文献   
10.
P(N-phenylmaleimide-alt-styrene) (PNS) was synthesized, and nylon 6 (PA6)/PNS blends were prepared by melt blending. The heat resistant and crystallographic properties of PA6/PNS blends with different contents were investigated and analyzed. The results showed that the heat deflection temperature (HDT), relative crystallinity (Xn), and dynamic viscosity (η) increased with increasing PNS. The results of differential scanning calorimetry proved that PNS had played a positive role in nucleating PA6. Scanning electron microscosopy showed that the PNS domains were between 0.2 and 4 μm in diameter. The experimental results indicated that the addition of PNS improved the rigidity of PA6/PNS blends, thereby improving the heat-resistant properties of these blends. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47689.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号