首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   10篇
  国内免费   63篇
综合类   1篇
化学工业   14篇
金属工艺   81篇
机械仪表   6篇
矿业工程   1篇
能源动力   9篇
一般工业技术   67篇
冶金工业   21篇
原子能技术   5篇
自动化技术   1篇
  2023年   2篇
  2022年   24篇
  2021年   9篇
  2020年   14篇
  2019年   33篇
  2018年   13篇
  2017年   3篇
  2016年   7篇
  2015年   8篇
  2014年   8篇
  2013年   15篇
  2012年   4篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
  2007年   5篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   4篇
  2000年   5篇
  1999年   8篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
排序方式: 共有206条查询结果,搜索用时 359 毫秒
1.
《材料科学技术学报》2019,35(7):1323-1333
Biomedical Ti-Fe-Zr-Y alloys were prepared by 3D printing on pure titanium substrate. The influences of Zr on mechanical, forming, and biological properties of the alloys were investigated in detail. The results showed that with increasing the Zr addition, the surface roughness, friction coefficient and worn volume decrease at first and then increase, the lowest values obtained at 5.86 at.% Zr addition. The ultimate compression stress and specific strength gradually decrease. The studied alloys have no cytotoxicity. They can promote the early adhesion and proliferation of cells. The eutectic alloy with 5.86 at.% Zr addition has the best ability of apatite deposition, it exhibits a better comprehensive performance among the studied alloys, which is superior to the Ti70.5Fe29.5 and Ti-6Al-4 V alloys.  相似文献   
2.
《材料科学技术学报》2019,35(9):1966-1976
Oxide powders of Zr1–xTixO2 (x = 0–1) solid solutions with micron-sized particles were synthesized via a solution combustion method. The synthesis process and Zr/Ti molar ratio were optimized to produce powders with the tetragonal crystal structure. X-ray diffraction, Raman spectroscopy and transmission electron spectroscopy results confirm that a full crystallization microstructure with the single tetragonal phase is obtained after calcination at 600 °C while maintaining the crystallite size <30 nm. Zr/Ti oxide mixtures with Zr ≥ 67 mol% exhibit a tetragonal crystal structure and the embedding Ti in ZrO2 improves the structure stability. The nitrogen sorption results indicate that the powders possess mesoporous morphology with medium specific surface areas (∼10–50 m2/g). Chemical stability tests show that these powders are relatively stable with negligible removal of titanium and zirconium after elution by 0.5 mol/L HCl. Density functional theory was used to calculate the most stable structure with low energy for the selected composition.  相似文献   
3.
《材料科学技术学报》2019,35(7):1378-1387
The effect of cerium content on the corrosion behavior of Al-Co-Ce amorphous alloys in 0.6 M NaCl solution was investigated by cyclic polarization, Mott-Schottky and X-ray photoelectron spectroscopy techniques. Results indicated that the open circuit potential of Al-Co-Ce amorphous alloys displayed a decreased tendency with the increase in Ce content, and the amorphous alloy with 4 at.% Ce presented both the lowest passive current density and donor density indicating the best corrosion resistance, while adding excess Ce led to the reduced corrosion resistance of Al-Co-Ce alloys. Furthermore, it was found that a low Ce content is beneficial to the formation of a more protective passive film on Al-Co-Ce amorphous alloys, and the corrosion inhibition reactions of Al-Co-Ce alloys in 0.6 M NaCl solution were changed with the increase in Ce content and the detailed reasons were discussed.  相似文献   
4.
《材料科学技术学报》2019,35(7):1444-1454
The galvanic corrosion of the Q-phase/Al couple in 0.1 M NaCl solutions has been studied using the scanning vibrating electrode technique (SVET), the scanning ion-selective electrode technique (SIET) and energy dispersive X-ray spectroscopy (EDX). The galvanic corrosion of the Q-phase/Al couple was found to be dependent on pH and immersion time. Current density maps obtained by SVET shows that the anodic oxidation processes emerge from Al in a localized manner in pH 2 and 6 solutions but is initiated in a uniform manner in pH 13 solution, whereas, the cathodic processes are more homogeneously distributed over the Q-phase at pH 2, 6 and 13. It is seen that the Q-phase remains cathodic in the Q-phase/Al couple in acidic, neutral and alkaline solutions indicating that the galvanic polarity of the Q-phase is independent of pH. The effect of the galvanic corrosion was largest at pH 2 and 13 compared to pH 6. The pH map obtained by SIET indicates that the galvanic activity of the Q-phase/Al couple proceeds via heavy alkalization of the Q-phase surface with the generation of appreciable amounts of OH ions. The enrichment of Cu indicated by EDX is responsible for the observed cathodic activity of the Q-phase in the Q-phase/Al couple.  相似文献   
5.
Herein, the effects of Fe/Ni ratio on the microstructure, mechanical properties, and corrosion resistance in a 3.5 wt% NaCl solution of FexNi65−xCr20Al10Nb5 are investigated systematically. It is found that the phases shifted from the FCC-dominated to the BCC-dominated with the molar ratio of the Fe/Ni increased. The strength of FexNi65−xCr20Al10Nb5 increases with the molar ratio of Fe/Ni further increased, while the plasticity decreases. The yield strength reaches 1,653 MPa at x = 45. The alloy exhibits the best corrosion resistance when x = 35 which is attributed to the dominant FCC phases in the dendritic region.  相似文献   
6.
In a direct coal liquefaction unit, pressure relief valves locate on the pipeline between the atmospheric and vacuum towers. Failures of the valve components occur frequently owing to the harsh operation conditions. A combined numerical-experiment investigation on the failures of valves is conducted in this paper. The variation of relative erosion rates of WC–Co coating with impact angles, the function of relative particle velocity, and the distribution of particle diameters are obtained from the high-temperature erosion experiments. Furthermore, the erosion mechanism of WC–Co coating under large impact angles is clarified. In the numerical simulation, the evaporation–condensation, particle motion, erosion, and the modified RNG k-ε turbulence models are used to analyze the phase transition and particle erosion in the valves. Results showed that: due to the high pressure drop and convergent–divergent structure of angle valve, the coal-oil slurry flashes as it enters into the valves. The evaporation of liquid oil produces a large amount of vapor oil, and results in a rapid increase in flow velocity. High concentration solid particles, driven by the high-speed stream, tend to erode the inner surface of valves. Severe erosion can be found in the spool of angle valve, downstream bushings at the angle valve and ball valve. The calculation results agree well with actual failure morphologies, verifies the accuracy of the present prediction method.  相似文献   
7.
The residual stress evolution in a safe-end/nozzle dissimilar metal welded joint of CAP1400 nuclear power plants was investigated in the manufacturing process by finite element simulation. A finite element model, including cladding, buttering, post-weld heat treatment (PWHT) and dissimilar metal multi-pass welding, is developed based on SYSWELD software to investigate the evolution of residual stress in the aforementioned manufacturing process. The results reveal a large tensile axial residual stress, which exists at the weld zone on the inner surface, leads to a high sensitivity to stress corrosion cracking (SCC). PWHT process before dissimilar metal multi-pass welding process has a great influence on the magnitude and distribution of final axial residual stress. The risk of SCC on the inner surface of the pipe will increase if PWHT process is not taken into account. Therefore, such crucial thermal manufacturing process such as cladding, buttering and post-weld heat treatment, besides the multi-pass welding process, should be considered in the numerical model in order to accurately predict the distribution and the magnitude of the residual stress.  相似文献   
8.
The hot deformation behavior and workability of a new reduced activation ferritic/martensitic steel named SIMP steel for accelerator-driven system were studied.The flow curve and its microstructure were studied at 900-1200℃ and strain rate range of 0.001-10 s~(-1).The results showed that the deformation behavior of the SIMP steel during hot compression could be manifested by the Zener-Hollomon parameter in an exponent-type equation.Based on the obtained constitutive equation,the calculated flow stresses were in agreement with the experimentally measured ones,and the average activity energies QDRV and QHW for the initiation of dynamic recrystallization and the peak strain were calculated to be 476.1 kJ/mol and 462.7 kJ/mol,respectively.Furthermore,based on the processing maps and microstructure evolution,the optimum processing condition for the SIMP steel was determined to be 1050-1200 ℃/0.001-0.1 s~(-1).  相似文献   
9.
The effect of sulphide(Na_2S) concentration(SC) on the corrosion and cavitation erosion behaviours of a cast nickel aluminium bronze(NAB) in 3.5% NaCl solution is investigated in this study.The results show that when the SC exceeds 50 ppm,the hydrogen evolution reaction dominates the cathodic process,and a limiting current region appears in the anodic branch of the polarisation curve due to the formation of a copper sulphide film,which is a diffusion-controlled process.After longterm immersion,the increased mass loss rate of NAB with the sulphide additions of 20 and 50 ppm is attributed to the less protective films,which contains a mixture of copper oxides and sulphides.Moreover,NAB undergoes severe localised corrosion(selective phase corrosion,SPC) at the β' phases and eutectoid microstructure α+κ_Ⅲ.By comparison,NAB undergoes general corrosion and a copper sulphide film is formed in 100 and 200 ppm sulphide solutions.Cavitation erosion greatly increases the corrosion rate of NAB in all solutions and causes a negative potential shift in 3.5% NaCl solution due to the film destruction.However,a positive potential shift occurs in the solutions with SC higher than 50 ppm due to the accelerated mass transfer of the cathodic process.The cavitation erosion mass loss rate of NAB increases with the increase of SC.The occurrence of severe SPC decreases the phase boundary cohesion and causes brittle fracture under the cavitation impact.The corrosion-enhanced erosion is the most predominant factor for the cavitation erosion damage when the SC exceeds 50 ppm.  相似文献   
10.
Diamond content is a key factor affecting diamond/SiC composite performance, especially thermal and mechanical properties, but the composite with high diamond content manufacturing is still challenging issues. Hot mold pressing combined with liquid silicon infiltration to make diamond/SiC composites with high diamond content and relative density has been proposed in this paper. In addition, the effect of diamond particle size on the maximization of diamond content as well as properties of the composites were evaluated. The experiment shows that the content of diamond in the composites increases with the increase of the diamond particle size. When the particle size of diamond is 400 µm, the volume fraction of diamond reaches 59.08%. The highest thermal conductivity (ddia= 300 µm) and highest bending strength (ddia= 50 µm) are 616.77 W/m K (It is the maximum TC of diamond/SiC prepared by pressureless infiltration at present) and 380 MPa, respectively. This work provides a novel and efficient preparation method for further improving the thermal conductivity of diamond/SiC composites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号