首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
化学工业   14篇
金属工艺   2篇
无线电   4篇
一般工业技术   4篇
冶金工业   2篇
  2023年   6篇
  2022年   1篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2010年   1篇
  2009年   2篇
  2006年   3篇
  2002年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Polymer infiltration pyrolysis (PIP) was used to prepare carbon fiber-reinforced silicon carbide (C/SiC) composites, and chemical vapor deposition (CVD) was employed to fabricate SiC coating. The oxidation behavior at 1700?°C and the flexural property at 1200?°C were tested. SiC coating exerted remarkable oxidation effects on PIP-C/SiC composites. In the absence of coating, PIP-C/SiC composites lost 29.2% of its mass, with merely 6.74% of the original flexural strength retained. In contrast, CVD-SiC coated PIP-C/SiC composites had the mass loss of 10.2% and the flexural strength retention ratio of 23.4%. In high-temperature tests, SiC coating played an important role in the flexural strength of PIP-C/SiC composites. The flexural strength of uncoated composites became 330.7?MPa, and that of coated ones reduced from 655.3 to 531.2?MPa.  相似文献   
2.
目的 以K2TaF7和Ta粉为主要原料,在石墨材料表面制备TaC涂层。方法 反应物在1200℃的熔盐体系中保温3h,反应生成碳化物,经后续2300℃真空保温1h后,得到TaC涂层材料。采用XRD和SEM对涂层的组成结构进行表征,采用拉开法对涂层的和石墨基体的结合强度进行测量,采用纳米压痕对涂层的硬度和弹性模量进表征,最后对TaC涂层的抗腐蚀性能进行模拟测试评估和实际的SiC长晶测试。结果 熔盐法制备的TaC涂层连续地覆盖在石墨表面,保持了原始石墨的形貌,其物相组成为TaC,呈现出亮黄色,厚度为20~40μm,涂层的晶粒无择优取向生长,呈现出无序堆积的状态。TaC涂层与石墨基体的结合强度为9.49 MPa,硬度和弹性模量分别为14.42 GPa和123.32 GPa。TaC涂层样品于2 300℃的SiC腐蚀气氛环境下保温3 h,质量损失率仅为0.01 g/(m2·h),远低于同测试条件下无涂层石墨样品的质量损失率4.67 g/(m2·h)。在2 300℃氩气气氛下保温3 h的SiC粉包埋TaC涂层的接...  相似文献   
3.
Monodisperse Pd nanoparticles were prepared by controlled reduction in organic phase and subsequent transfer to aqueous phase. A systematic study was carried out to finely tune nanoparticle size and optimize particle size distribution. The use of 4-dimethylaminopyridine as a transfer agent allowed for the easy and quantitative extraction of the Pd to the aqueous phase. The quaternary amine-functionalized metal nanoparticles were then used as metallic micelle replicas to grow silica around them. This novel and facile metal incorporation method provided an excellent dispersion and homogeneity of Pd nanoparticles on silica supports. In addition, cationic surfactants, such as cetyltrimethylammonium bromide, can be used to produce mesoporosity in these nanoparticles-containing silicas. As an alternative, the metal nanoparticles were functionalized with alkoxysilanes by covalent binding using mercaptopropyltriethoxysilane and then co-polymerized with tetraethoxysilane via basic-catalyzed hydrolysis in the presence of cationic surfactants.  相似文献   
4.
《Ceramics International》2019,45(13):15980-15989
The magnetic enrichment behavior of monodispersed MFe2O4 (M = Mg, Ca, Ni, Co, and Cu) ferrite nanoparticles with different size (10–130 nm) on the surface of a 15 mm o.d. NdFeB-N40 magnetic rod has been investigated. The materials were synthesized by a modified sol-gel method. They were characterized by XRD, TEM, and VSM. The magnetic field of the rod was modelled numerically using a finite element analysis software to obtain the input data for the magnitude of magnetic force. Three adsorption models can be used to describe the enrichment mechanism of ferrite nanoparticle depending on the magnetic permeability: (i) Freundlich adsorption model at low magnetic permeability (<10 μemu/Oe) which leads to the enrichment percentage below 50%, (ii) mixed (multilayer) adsorption model at intermediate permeability (10–50 μemu/Oe), and (iii) a monolayer adsorption at high permeability (>100 μemu/Oe) leading to the enrichment percentage above 90%.  相似文献   
5.
《Ceramics International》2019,45(14):16911-16917
This work presents the structural, morphological and luminescent, properties of SrGe4O9 (SGO):Er3+,Yb3+ phosphors. These phosphors were synthesized by simple combustion synthesis and subsequently annealed at 1100 °C. The XRD patterns revealed that all the SGO samples doped with Yb3+ concentrations from 2 to 10 at.% presented a trigonal pure phase (the Er3+ concentration was fixed to 1 at.%). The morphology of the SGO samples was analyzed by scanning electron microscopy and found that they are formed by microparticles with irregular shapes and average sizes in the range of 0.2 μm–3 μm. The luminescence measurements of the SGO:Er3+,Yb3+ samples showed the presence of two main emission bands at 551 nm (green) and at 662 nm (red) under excitation at 980 nm, which are associated to Er3+ transitions. For Yb concentration of 2 and 3 at.% the green band dominated, but the red band became more intense for Yb concentrations above 5 at.%. As result, the CIE coordinate changed from the green to the yellow region. The increase for the Yb content from 2 to 10 at.% also enhanced of the NIR emission of Er3+ ≈5 times and the maximum upconversion emission was observed for 8% of Yb concentration. Further, the surface of the SGO samples was analyzed by the FTIR technique in order to find OH groups which are common luminescent quenching centers, but these groups were not detected on the samples. Since the SGO samples presented tunable emission, absence of OH groups on their surface and stable crystalline structure for high Yb dopant concentrations, they could be good candidates as phosphors for solid state lighting or displays applications.  相似文献   
6.
The work presented demonstrates the utilization of micro-contact printing of self-assembled monolayers (SAMs) of gold nanoparticles (NPs) to pattern the porous thin metallic film composing the top electrode of an ultra-fast capacitive relative humidity sensor based on miniaturized parallel-plates electrodes. The rest of the device, which occupies an area of only 0.0314 mm2, is fabricated by inkjet printing stacked individual drops of functional materials, namely gold NPs for the bottom electrode and a polymeric humidity sensing layer, on a polymeric foil. Compared to other printing methods, the use of microcontact printing to pattern the top electrode enables the additive transfer of a solvent-free metallic layer that does not interact chemically with the sensing layer, permitting the thinning of the latter without risk of short-circuits between electrodes, and broadening the range of usable sensing materials for detection of other gases. Thinning the sensing layer yields to ultra-fast response devices with high values of capacitance and sensitivity per surface area. The fabrication process is compatible with low heat-resistant polymeric substrates and scalable to large-area and large-scale fabrication, foreseeing the development of low-cost vapor sensing sheets with high space–time resolution, where every sensor would correspond to a pixel of a large array.  相似文献   
7.
《Ceramics International》2020,46(11):18903-18910
Generally, the emission intensity and afterglow of the near infrared phosphors can be improved by co-doping the sensitizer. In this work, Bi3+ ions as sensitizer are introduced into the near infrared phosphor Mg3Y2Ge3O12:Cr3+, and the luminescence properties are investigated. According to the principle of radius adaptation, Bi3+ ions would occupy eight coordinates in the host instead of Y3+ and Mg2+. Through structural refinement, theoretical calculation and experimental phenomena, there are two kinds of luminescent sources for Bi3+ ions, which come from 3P11S0 (441 nm) and MMCT (330 nm), respectively. In addition, the substitution of Bi3+ for Mg2+ will result in inequivalent substitution forming defects (BiMg·), and the trap depth is 0.55 eV. For Bi3+ and Cr3+ co-doped Mg3Y2Ge3O12, there are two factors can that can affect the luminescent properties of Cr, which are energy transfer and defects. The samples are obtained with three times the original emission intensity with the introduction of defects. At the same time, Bi3+ ions capture electrons to form new electron traps Bi2+ (Bi3+ + e-) and the trap depth is 0.81 eV. Therefore, under the action of two traps BiMg· and Bi2+ (Bi3+ + e-), the afterglow characteristics of the samples are improved and the time can reach 1.5 h.  相似文献   
8.
《Ceramics International》2018,44(12):13873-13878
Continuous carbon fiber reinforced silicon carbide matrix composites (C/SiCs) have been widely used in aeronautic and astronautic fields because of their more attractive high temperature properties with less structural weight. However, reinforcing carbon fibers are susceptible to oxidation especially when the notch defects (ND) expose them to air. Mechanical tests, microstructural characterization combined with computed tomography (CT) were performed to explore the effect of the ND on the oxidation behavior and residual properties of the C/SiCs. Results showed that, before oxidation, the remaining bending strengths of the C/SiCs with even 5 ND numbers maintained still above 93%, indicating that increase of the ND numbers had little effect on mechanical properties. However, after oxidation at 700 °C, weight loss ratio of the C/SiCs with the ND numbers of 0, 1, 3 and 5 increased from 1.01% to 3.73%. It suggested that the more the ND numbers, the greater the proportion of carbon fiber exposed to air, and the less the oxidation resistance. Meanwhile, the residual bending strength remaining ratio of the C/SiCs largely reduced from 83.7% to 60.7% with the increase of ND numbers. It pointed out that the ND induced oxidation degradation of the reinforcing fiber caused higher sensitivity to the mechanical strength of the C/SiCs, and with the increase in the ND numbers, the strengths decreased more obviously.  相似文献   
9.
In this article,varied praseodymium polyphosphate hosts:M~I(Li,Na K)Pr(PO_3)_4 microcrystals and LiLa_(1-x)Pr_x(PO_3)_4(x = 0.01-1)nanocrystals were successfully synthesized by the flux method and the coprecipitation technique,respectively.The size of stoichiometric nanocrystals of LiPr(PO_3)_4 was tuned by the te mpe rature of thermal treatment in range of 35-145 nm.In order to dete rmine the most suitable material for the non-contact optical thermometric applications,the temperature sensing measurements were carried out by using luminescence intensity ratio(LIR)of emission bands corresponding to the ~3 P_1→~3H_5 and ~3P_0→~3 H_5 electronic transitions of Pr~(3+) ions into the 123-423 K temperature range.The influence of the host material composition of M~Ⅰ(Li,Na,K)Pr(PO_3)_4 microcrystals on the sensitivity of luminescent thermometers was studied.It is found that the sensitivity of lithium praseodymium polyphosphate is the highest of all micropowders under investigation.Moreover,it is found that the nanocrystals reveal much higher relative sensitivity in respect to the microcrystalline counterparts.The highest sensitivity of LIR temperature sensing is found for LiPr(PO_3)_4 nanocrystals(35 nm grain size)in the whole temperature range,reaching 0.283%/K at 164 K.The impact of the average grain size on the sensitivity of LIR based thermometers of LiPr(PO_3)_4 nanocrystals was investigated.It is found that the reduction of the grain size from 145 to 35 nm results in the enhancement of the relative sensitivity from0.156 to 0.240%/K at 223 K.Additionally it is found that the high dopant concentration possesses favorable influence on the relative sensitivity of LiLa_(1-x)Pr_x(PO_3)_4 nanocrystalline luminescent thermometers.  相似文献   
10.
This research reported the transparent non-volatile write-once-read-many-times (WORM) memory behaviors of memory devices based on zinc oxide nanoparticles (ZnO NPs) embedded in an insulating poly(ethylene-co-vinyl acetate) (EVA), sandwiched between two ITO-coated flexible polyethylene naphthalate (PEN) substrates. The memory devices were fabricated employing a thermal roll lamination technique with the laminated-structure of PEN/ITO/EVA:ZnO NPs/ITO/PEN. The average transmittance of the laminated memory device was over 70% for an optical visible range of 400–800 nm. The maximum ON/OFF current ratio for the memory device was about 103. In addition, a reliability study for continuous read operations in a long time memory device is presented. The conductance switching mechanisms of the laminated memory device were analyzed using theoretical models on the basis of the experimental data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号