首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3551篇
  免费   429篇
  国内免费   65篇
电工技术   21篇
综合类   24篇
化学工业   2510篇
金属工艺   90篇
机械仪表   46篇
建筑科学   21篇
矿业工程   14篇
能源动力   518篇
轻工业   89篇
水利工程   5篇
石油天然气   48篇
武器工业   13篇
无线电   129篇
一般工业技术   387篇
冶金工业   46篇
原子能技术   11篇
自动化技术   73篇
  2024年   2篇
  2023年   130篇
  2022年   112篇
  2021年   118篇
  2020年   203篇
  2019年   137篇
  2018年   111篇
  2017年   177篇
  2016年   230篇
  2015年   213篇
  2014年   230篇
  2013年   260篇
  2012年   247篇
  2011年   215篇
  2010年   137篇
  2009年   166篇
  2008年   174篇
  2007年   336篇
  2006年   326篇
  2005年   115篇
  2004年   57篇
  2003年   64篇
  2002年   45篇
  2001年   51篇
  2000年   28篇
  1999年   26篇
  1998年   11篇
  1997年   4篇
  1996年   11篇
  1995年   6篇
  1994年   7篇
  1993年   15篇
  1992年   8篇
  1991年   10篇
  1990年   6篇
  1989年   8篇
  1988年   12篇
  1987年   27篇
  1982年   4篇
  1951年   6篇
排序方式: 共有4045条查询结果,搜索用时 203 毫秒
1.
Steam reforming of liquid hydrocarbon fuels is an appealing way for the production of hydrogen. In this work, the Rh/Al2O3 catalysts with nanorod (NR), nanofiber (NF) and sponge-shaped (SP) alumina supports were successfully designed for the steam reforming of n-dodecane as a surrogate compound for diesel/jet fuels. The catalysts before and after reaction were well characterized by using ICP, XRD, N2 adsorption, TEM, HAADF-STEM, H2-TPR, CO chemisorption, NH3-TPD, CO2-TPD, XPS, Al27 NMR and TG. The results confirmed that the dispersion and surface structure of Rh species is quite dependent on the enclosed various morphologies. Rh/Al2O3-NR possesses highly dispersed, uniform and accessible Rh particles with the highest percentage of surface electron deficient Rh0 active species, which due to the unique properties of Al2O3 nanorod including high crystallinity, relatively large alumina particle size, thermal stability, and large pore volume and size. As a consequent, Rh/Al2O3-NR catalyst exhibited superior catalytic activity towards steam reforming reactions and hydrogen production rate over other two catalysts. Especially, Rh/Al2O3-NR catalyst showed the highest hydrogen production rate of 87,600 mmol gfuel?1 gRh?1min?1 among any Rh-based catalysts and other noble metal-based catalysts to date. After long-term reaction, a significant deactivation occurred on Rh/Al2O3–NF and Rh/Al2O3-SP catalysts, due to aggregation and sintering of Rh metal particles, coke deposition and poor hydrothermal stability of nanofibrous structure. In contrast, the Rh/Al2O3-NR catalyst shows excellent reforming stability with negligible coke formation. No significantly sintering and aggregation of the Rh particles is observed after long-term reaction. Such great catalyst stability can be explained by the role of hydrothermal stable nanorod alumina support, which not only provides a unique environment for the stabilization of uniform and small-size Rh particles but also affords strong surface basic sites.  相似文献   
2.
Through a facile hydrothermal method, we have successfully prepared Ti3C2/Bi2.15WO6 (TC/BWO) composite, and systematically investigated their reactivity for the photocatalytic reduction of Cr(VI) under visible light. X-ray diffraction and Raman analysis confirm the formation of heterostructure between Bi2.15WO6 and Ti3C2. The resultant 7TC/BWO composite exhibits enhanced photoactivity toward Cr(VI) reduction. After 120 min irradiation, the conversion of Cr(VI) reaches 92.5% with the quasi-first-order kinetic constant of k = 0.0145 min?1, which is higher than that of pure BWO (30% and k = 0.0005 min?1). The electrochemical and photoluminescent characterization confirm that the introduction of Ti3C2 is conducive to the separation of carriers, thus significantly improves the photocatalytic performance of TC/BWO. Furthermore, the radical capture experiments verify that the electrons are important for enhancing reduction of Cr(VI) to Cr(III). As a result, this research provides a comprehensive understanding of the reduction of Cr(VI) by TC/BWO composite under visible light.  相似文献   
3.
The brittleness of MoSi2 ceramic and the thermal mismatch between MoSi2 coating and C / C composite lead to brittle cracking of the coating at 900−1200 °C. This problem has been overcome in this studyby introducing submicron-SiB6 into the coating. The pre-fabricated cracks and a kinetics model of hot-pressed SiB6-MoSi2 ceramic could quantitatively predict the glass growth and crack healing. As expected, enhancing temperature and SiB6 content increased the growth rate of the borosilicate glass and the crack healing ability of MoSi2 ceramic, which was ascribed to the lower oxidation activation energy and larger specific surface area of submicron-SiB6. For the plasma sprayed coating, SiB6 with submicron structure was benefit for cracking inhibition and formation of borosilicate glass during oxidation, reducing the oxygen permeability and the consumption of inner coating. Hence, the 15 % SiB6-MoSi2 coatings raised the protection times to 84 and 120 h at 900 and 1200 °C respectively, presenting favorable oxidation protective performance.  相似文献   
4.
We use photoluminescence to observe light-induced degradation in silicon in real time. Numerical simulations are used to match our results and lifetime decay data from the literature with theoretical models for the generation of the light-induced boron–oxygen defects. It is found that the existing model of the slowly generated defect SRC, where its saturated concentration is a function of the majority carrier concentration, does not explain certain results in both p- and n-type samples. A new model is proposed in which the saturated SRC concentration is controlled by the total hole concentration under illumination.  相似文献   
5.
6.
Corncob liquefaction in supercritical ethanol–water was performed with and without the addition of an alkali catalyst by direct addition or biomass impregnation in a 250-cm3 batch reactor. The effects of temperature, solvent and alkali addition on the biomass conversion level and oil yield were investigated to find the optimum condition. For non-catalytic liquefaction using a 1:1 (v/v) ethanol: water ratio, a maximum oil yield and conversion level of 49.0% and 93.4%, respectively, were obtained at 340 °C. For alkali catalytic liquefaction, the oil yield with KOH addition (57.5%) was higher than that from KOH-impregnated corncob liquefaction (43.3%). The oil from liquefaction with KOH addition had higher heating value (26.7–35.3 MJ kg−1) than the corncob (19.1 MJ kg−1). The dominant components of the obtained oil were found by GC/MS analysis to be aldehyde, ester, phenol derivatives and aromatic compounds.  相似文献   
7.
As an industrial pollutant, tar derived from biomass gasification is used as the precursor for fabricating a novel carbon-metal hydroxides composite electrode. A slurry (the mixture of tar, KOH and melamine) is daubed uniformly onto the nickel foam, which is directly carbonized to form NPC@LDH electrode material. This electrode is further coated with NiCo-LDH nanosheets using an electrodeposition method to form NF@NPC@LDH. The newly made NF@NPC@LDH electrode exhibits a high specific capacity of 9.6 F cm−2 at a current density of 2 mA cm−2 and good rate performance (55.3% retention). Furthermore, a hybrid NF@NPC@LDH//NF@PC all-solid-state supercapacitor is fabricated, and the device exhibits high energy density of 1.28 mWh cm−3 at a power density of 8.04 mW cm−3, low resistance and good cycling stability.  相似文献   
8.
以草酸乙醇溶液为沉淀剂,采用不同的沉淀次序(并流、反加和正加)制备了CuO-ZnO-Al2O3/HZSM-5复合型催化剂,对CO2加氢直接合成二甲醚反应的催化活性顺序为:并流法催化剂>反加法催化剂>正加法催化剂。3种复合催化剂的还原温度由低到高的顺序为:并流法催化剂<反加法催化剂<正加法催化剂。在沉淀过程中,反加法和正加法均形成类胶体沉淀,相应催化剂的比表面积也较大。IR研究发现,催化剂在1101cm-1处表现Cu/Zn/Al氧化物与HZSM-5分子筛之间相互作用的IR吸收峰强度与其催化活性间存在对应关系。XRD结果表明,并流法得到的催化剂前驱体中有铜锌同形取代现象,有利于催化剂活性的发挥。  相似文献   
9.
10.
A coupled three-dimensional (3-D) model, combining hydrodynamics with biochemical reactions, was developed to simulate the local transient flow patterns and the dynamic behaviors of cell growth and phenol biodegradation by yeast Candida tropicalis in the bubble-column bioreactor, using the computational fluid dynamic (CFD) method. In order to validate this proposed model effectively, the validation of the local hydrodynamic characteristics of the gas-mineral salt solution (gas-liquid) two-phase system, with the phenol concentration of 1200 mg/L, and with the absence of cells, was performed in a square-sectioned bubble column bioreactor using the LDA system and conductivity probe. Furthermore, the validation of phenol biodegradation behaviors by yeast Candida tropicalis at different initial concentrations of phenol and cell was also carried out in the above bubble-column bioreactor. The results indicated that the model simulations had a satisfying agreement with the experimental data. Finally, the local instantaneous flow and phenol biodegradation features including gas holdup, gas velocity, liquid velocity, cell concentration and phenol concentration inside the bioreactor were successfully predicted in different-scale bubble columns by the proposed model. © 2006 American Institute of Chemical Engineers AIChE J, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号