首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   34篇
  国内免费   13篇
综合类   3篇
化学工业   131篇
金属工艺   122篇
机械仪表   9篇
矿业工程   6篇
能源动力   45篇
轻工业   2篇
水利工程   1篇
石油天然气   2篇
无线电   14篇
一般工业技术   90篇
冶金工业   29篇
原子能技术   2篇
自动化技术   9篇
  2024年   2篇
  2023年   56篇
  2022年   44篇
  2021年   22篇
  2020年   28篇
  2019年   27篇
  2018年   10篇
  2017年   21篇
  2016年   13篇
  2015年   9篇
  2014年   22篇
  2013年   18篇
  2012年   19篇
  2011年   31篇
  2010年   12篇
  2009年   21篇
  2008年   8篇
  2007年   12篇
  2006年   15篇
  2005年   12篇
  2004年   3篇
  2003年   7篇
  2002年   6篇
  2001年   7篇
  2000年   9篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
排序方式: 共有465条查询结果,搜索用时 234 毫秒
1.
Ultimate tensile strength of five different continuous fiber-reinforced ceramic matrix composites (CMCs), including SiCf/BSAS (two dimensional (2D), 2 types), SiCf/MAS (2D), SiCf/SiC (2D), and Cf/SiC (2D, 2 types), was determined as a function of test rate at 1100–1200 °C in air. All five CMCs exhibited a significant dependency of ultimate tensile strength on test rate such that the ultimate tensile strength decreased with decreasing test rate. The dependency of ultimate tensile strength on test rate, the applicability of preload technique, and the predictability of life from one loading configuration (constant stress-rate loading) to another (constant stress loading) all suggested that the overall, phenomenological delayed failure of the CMCs would be governed by a power-law type of slow crack growth.  相似文献   
2.
在锻造等金属大变形的工艺设计中,相关参数的确定很大程度上依赖于经验公式,而有限元法在金属大变形过程数值模拟中有明显的局限性,且模拟结果难以验证。本文基于有限体积法模拟了一典型开式模锻过程,并在通用经验值允许的范围内,根据模拟结果调整工艺设计中的参数设置,有效避免了一种锻件常见缺陷。通过分析变形过程特定时段的变形区形状、分流面的变化及变形力分布曲线,结合相关塑性理论验证了模拟结果的正确性,实现了工艺优化设计。研究证明理论预测与数值模拟相“拟合”的方法可以代替实验用于指导生产实践。  相似文献   
3.
《Synthetic Metals》2005,148(3):237-243
Self-assembled polyaniline nanofibers doped with 2-acrylamido-2-methyl-1-propanesulfonic acid were prepared by oxidative polymerization of aniline in the presence of a nonionic surfactant. These nanofibers were dedoped to the semiconducting emeraldine base and then redoped to the metallic emeraldine hydrochloride. It was possible to introduce a different dopant anion from that used in the initial synthesis with no significant changes in fiber morphology or diameter, as observed by scanning electron microscopy (SEM). The method of sample preparation for SEM significantly affected the observed morphology. Deposition from aqueous dispersions resulted primarily in nanofibers that ranged in diameter from 28 to 82 nm (average: 56 nm), whereas drying to solid powder resulted in a less fibrous material. UV–vis–NIR absorbance spectroscopy indicated that the electronic structure of the emeraldine base nanofibers was identical to bulk emeraldine base obtained by conventional synthesis. Estimates from X-ray diffraction data suggested that the fractional crystallinity of emeraldine hydrochloride nanofibers did not differ significantly from the bulk powder.  相似文献   
4.
《材料科学技术学报》2019,35(9):1966-1976
Oxide powders of Zr1–xTixO2 (x = 0–1) solid solutions with micron-sized particles were synthesized via a solution combustion method. The synthesis process and Zr/Ti molar ratio were optimized to produce powders with the tetragonal crystal structure. X-ray diffraction, Raman spectroscopy and transmission electron spectroscopy results confirm that a full crystallization microstructure with the single tetragonal phase is obtained after calcination at 600 °C while maintaining the crystallite size <30 nm. Zr/Ti oxide mixtures with Zr ≥ 67 mol% exhibit a tetragonal crystal structure and the embedding Ti in ZrO2 improves the structure stability. The nitrogen sorption results indicate that the powders possess mesoporous morphology with medium specific surface areas (∼10–50 m2/g). Chemical stability tests show that these powders are relatively stable with negligible removal of titanium and zirconium after elution by 0.5 mol/L HCl. Density functional theory was used to calculate the most stable structure with low energy for the selected composition.  相似文献   
5.
Temperature control of optical focal planes comes with the intrinsic challenge of creating a pathway that is both extremely flexible mechanically and highly conductive thermally. The task is further complicated because science-caliber optical focal planes are extremely delicate, yet time, cost, and their unique nature means that their mechanical resiliency is rarely tested and documented. The mechanical engineer tasked with the thermo-mechanical design must then create a highly conductive thermal link that minimizes the tensile and shear stresses transmitted to the focal plane without design parameters on an acceptable stiffness and without data on the stiffness of previously implemented thermal links.This paper describes the development and testing of the thermal link developed for the Portable Remote Imaging Spectrometer (PRISM) instrument. It will provide experimentally determined mechanical stiffness plots in the three axes of interest. Analytical and experimental thermal conductance results for the two-arm focal-plane thermal strap (TAFTS), from cryogenic to room temperatures, are also presented. The paper also briefly describes some elements of the fabrication process followed in developing a novel design solution, which provides high conductance and symmetrical mechanical loading, while providing enhanced flexibility in all three dimensions.  相似文献   
6.
The electrospinning of polyacrylonitrile (PAN) with a polyaniline and graphene sol–gel mixture produced uniform, smooth fibers with an average diameter of 0.3 μm. These electrospun fibers were stabilized for 2 h at 200 °C and then carbonized at 800 °C for 5 h. Composites were prepared by depositing Ni(OH)2 on the carbon nanofibers (CNFs) and calcining them at different temperatures. The composites were characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The effect of the calcination temperatures on the electrochemical properties was studied using cyclic voltammetry and electrochemical impedance spectroscopy. The specific capacitance (SC) was found to be highest (738 F g−1) at a calcination temperature of 400 °C. The charge transfer resistance (Rp) decreased as the calcination temperature was increased. However, the electrical double layer capacitance (EDLC) increased with an increase in the calcination temperature. The EDLC increased from 0.144 F g−1 at a calcination temperature of 100 °C to 485 F g−1 at a calcination temperature of 500 °C.  相似文献   
7.
Nowadays, energy shortage is one of the major problems in the world. Photocatalytic hydrogen production is a new type of energy technology with good application prospect. As a new type of photocatalytic semiconductor material, g-C3N4 has attracted much attention as a photocatalyst. By ultrasonic treatment of a mixed solution of g-C3N4 and bovine serum albumin, followed by adding a certain amount of silver nitrate solution and then directly hydrothermal treatment, a special dandelion-like g-C3N4/Ag (D-g-C3N4/Ag) was prepared. The scanning electronic microscopy, transmission electronic microscopy, X-ray diffraction, Fourier transform infrared, fluorescence and physicochemical adsorption methods were used to characterize the morphology and structure of D-g-C3N4/Ag. In addition, the photocatalytic H2 production of D-g-C3N4/Ag with different Ag loadings or in different sacrificial agents and different pH conditions were investigated. The results indicated that when triethanolamine was used as sacrificial agent, photocatalytic hydrogen efficiency was the best, and the rate of photocatalytic hydrogen production reached 862 μmol g−1 h− 1 as the Ag loading was 4%.  相似文献   
8.
《Ceramics International》2017,43(17):15237-15245
We report a facile method to prepare porous TiO2 and ZnO photo-catalytic ceramics in which colloidal silica was added to yield nano fused silica (FS). The colloidal silica forms continuous media within the porous ceramic structure, and when calcined at 550 °C, it converted to fused silica phase which is an excellent UV wave-guiding material. With light wave guiding effect of FS and capillary effect of reaction solution in the porous channels, the photo-catalytic reactions could occur at the vast active sites at interface inside the porous bulks, as well as at the external surfaces. Photo-catalysis experiments and kinetics were investigated and analyzed. The photo-catalytic efficiencies tested for methylene blue were enhanced by a factor of 4.1 for TiO2/FS system and, astonishingly, by a factor of 34.6 for ZnO/FS system, when compared with pure TiO2 and ZnO under identical testing conditions. A model of UV-waveguide ceramic systems was proposed and discussed. This study proposes a practical approach to construct UV-waveguide porous structures, of which the principle is also potentially applicable to other types of photo-catalytic materials, including visible light active photo-catalysts.  相似文献   
9.
The piezoelectric properties of lead-free piezoelectric ceramics are normally lower than those of lead oxide-based ceramics. In order to enhance the electromechanical performance of lead-free piezoelectric ceramics, an asymmetric chemical reduction was applied to sodium bismuth titanate (NBT)-based piezoelectric ceramics. Similar to the lead-containing ceramics, a curvature structure can be induced by the reduction in the NBT-based materials and lead-free RAINBOW (reduced and internally biased oxide wafer) devices can be fabricated. A large displacement (approximately 17 μm) under an electric field of 900 V/mm and high piezoelectric sensitivity (>4000 pC/N) under a stress, which are related to the reduction induced curvature, can be measured in the NBT-based devices. The apparent piezoelectric response of the lead-free RAINBOW devices is comparable to that of Pb(Zr,Ti)O3-based devices. We proposed that apart from the piezoelectric properties, flexoelectric effect could also be a contributing mechanism for the observed apparent piezoelectric response in RAINBOW devices.  相似文献   
10.
This paper is concerned with the improvement of dye-sensitized solar cell (DSSC) efficiency upon MgO post-treatment of the TiO2 electrode. A simple sol–gel technique, involving magnesium acetate as precursor, ethanol as solvent and nitric acid as stabilizer, is applied to prepare a solution of suspended MgO nanoparticles. A single drop of MgO sol at 0.1 M precursor concentration was spin-coated at 3000 rpm for 30 s onto the TiO2 electrode and sintered at 500 K for 1 h. Dye-loading using N3-dye was applied for 6 h. An increase in the average efficiency of the DSSC from 2.5% to 3.9% (over 50% enhancement) was recorded. Measurements of the dark IV characteristics, the open circuit voltage decays, the SEM images and the dye absorbance spectra, for both uncoated and MgO-coated electrodes were examined. The improvement of the DSSC efficiency was attributed to an upward shift of the TiO2 flat band energy and a reduction of the rate of back-transport and recombination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号