首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1116篇
  免费   22篇
  国内免费   53篇
电工技术   4篇
综合类   9篇
化学工业   171篇
金属工艺   328篇
机械仪表   18篇
建筑科学   2篇
矿业工程   7篇
能源动力   78篇
轻工业   1篇
石油天然气   1篇
无线电   128篇
一般工业技术   242篇
冶金工业   132篇
原子能技术   8篇
自动化技术   62篇
  2023年   40篇
  2022年   10篇
  2021年   29篇
  2020年   37篇
  2019年   70篇
  2018年   35篇
  2017年   78篇
  2016年   76篇
  2015年   64篇
  2014年   68篇
  2013年   71篇
  2012年   102篇
  2011年   79篇
  2010年   47篇
  2009年   45篇
  2008年   36篇
  2007年   69篇
  2006年   76篇
  2005年   19篇
  2004年   22篇
  2003年   20篇
  2002年   14篇
  2001年   18篇
  2000年   14篇
  1999年   10篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   5篇
  1994年   8篇
  1993年   2篇
  1992年   7篇
  1991年   2篇
  1990年   7篇
  1989年   1篇
  1988年   3篇
  1959年   1篇
排序方式: 共有1191条查询结果,搜索用时 203 毫秒
1.
The total energies of Laves phases in the Cr–Nb and Zr–Cr systems have been calculated by the pseudo-potential VASP code with a full relaxation of all structural parameters. The special quasirandom structures (SQSs) have been constructed and their total energies have been calculated by the VASP code to predict the enthalpies of mixing for bcc and hcp solid solution phases. The phonon calculations for the C14 and C15 Laves phases have been performed to analyze the phase stability at elevated temperatures. The experimental study on the Zr–Cr system has been carried out at different temperatures to determine the phase boundaries. Based on these results, thermodynamic models of Cr–Nb and Zr–Cr with extension to the ternary Zr–Nb–Cr systems have been developed in this work by using the CALPHAD approach.  相似文献   
2.
In this paper, a model taking into account the effects of carrier loss mechanisms has been developed. The model simulates the photovoltaic properties of the graphene/n-type silicon Schottky barrier solar cells (G/n-Si_SBSC), and it can reproduce the experimentally determined parameters of the G/n-Si_SBSC. To overcome the low efficiencies of G/n-Si_SBSC, their performances have been optimized by modifying the work function of graphene and Si properties, accounted for variation of its thickness and doping level. The obtained results show that the work function of graphene has the major impact on the device performance. Also, the temperature dependence of the G/n-Si_SBSC performance is investigated.  相似文献   
3.
This paper addresses the nonlinear stress-strain response in glass fibre non-crimp fabric reinforced vinylester composite laminates subjected to in-plane tensile loading. The nonlinearity is shown to be a combination of brittle and plastic failure. It is argued that the shift from plastic to brittle behaviour in the vinylester is caused by the state of stress triaxiality caused by the interaction between fibre and vinylester. A model combining damage and plasticity is calibrated and evaluated using data from extensive experimental testing. The onset of damage is predicted using the Puck failure criterion, and the evolution of damage is calibrated from the observed softening in plies loaded in transverse tension. Shear loading beyond linear elastic response is observed to result in irreversible strains. A yield criterion is implemented for shear deformation. A strain hardening law is fitted to the stress-strain response observed in shear loaded plies. Experimental results from a selection of laminates with different layups are used to verify the numerical models. A complete set of model parameters for predicting elastic behaviour, strength and post failure softening is presented for glass fibre non-crimped fabric reinforced vinylester. The predicted behaviour from using these model parameters are shown to be in good agreement with experimental results.  相似文献   
4.
The morphology of the photoactive layer critically affects the performance of the bulk heterojunction polymer solar cells (PSCs). To control the morphology, we introduced a hydrophobic fluoropolymer polyvinylidene fluoride (PVDF) as nonvolatile additive into the P3HT:PCBM active layer. The effect of PVDF on the surface and the bulk morphology were investigated by atomic force microscope and transmission electron microscopy, respectively. Through the repulsive interactions between the hydrophilic PCBM and the hydrophobic PVDF, much more uniform phase separation with good P3HT crystallinity is formed within the active layer, resulting enhanced light harvesting and improved photovoltaic performance in conventional devices. The PCE of the conventional device can improve from 2.40% to 3.07% with PVDF additive. The PVDF distribution within the active layer was investigated by secondary ion mass spectroscopy, confirming a bottom distribution of PVDF. Therefore, inverted device structure was designed, and the PCE can improve from 2.81% to 3.45% with PVDF additive. Our findings suggest that PVDF is a promising nonvolatile processing additive for high performance polymer solar cells.  相似文献   
5.
Greenish yellow organic light-emitting diodes (GYOLEDs) have steadily attracted researcher's attention since they are important to our life. However, their performance significantly lags behind compared with the three primary colors based OLEDs. Herein, for the first time, an ideal host-guest system has been demonstrated to accomplish high-performance phosphorescent GYOLEDs, where the guest concentration is as low as 2%. The GYOLED exhibits a forward-viewing power efficiency of 57.0 lm/W at 1000 cd/m2, which is the highest among GYOLEDs. Besides, extremely low efficiency roll-off and voltages are achieved. The origin of the high performance is unveiled and it is found that the combined mechanisms of host-guest energy transfer and direct exciton formation on the guest are effective to furnish the greenish yellow emission. Then, by dint of this ideal host-guest system, a simplified but high-performance hybrid white OLED (WOLED) has been developed. The WOLED can exhibit an ultrahigh color rendering index (CRI) of 92, a maximum total efficiency of 27.5 lm/W and a low turn-on voltage of 2.5 V (1 cd/m2), unlocking a novel avenue to simultaneously achieve simplified structure, ultrahigh CRI (>90), high efficiency and low voltage.  相似文献   
6.
Based on the phase transformation theories, especially the T0 concept of bainite transformation, alloy optimisation of bainitic steel with carbides has been carried out aiming at the produce of plastic mould with large cross-section. The effect of manganese and silicon on proeutectoid ferrite and bainite transformation is explored by dilatometric analysis, XRD and different microscopy techniques. The results show that after the alloy optimisation, the transformation of proeutectoid ferrite is suppressed and when the cooling rate is lower than 0·1°C?s??1, the new lower bainite transformation appears by decreasing carbon capacity of austenite and promoting carbide precipitation. Industrial production proves that the optimised alloy SDP1 can meet the demand for the plastic mould with the thickness of 1050?mm.  相似文献   
7.
Aiming to environment protection, green solvents are crucial for commercialization of solution-processed optoelectronic devices. In this work, d-limonene, a natural product, was introduced as the non-aromatic and non-chlorinated solvent for processing of polymer light-emitting diodes (PLEDs) and organic field effect transistors (OFETs). It was found that d-limonene could be a good solvent for a blue-emitting polyfluorene-based random copolymer for PLEDs and an alternating copolymer FBT-Th4(1,4) with high hole mobility (μh) for OFETs. In comparisons to routine solvent-casted films of the two conjugated polymers, the resulting d-limonene-deposited films could show comparable film qualities, based on UV–vis absorption spectra and observations by atomic force microscopy (AFM). With d-limonene as the processing solvent, efficient blue PLEDs with CIE coordinates of (0.16, 0.16), maximum external quantum efficiency of 3.57%, and luminous efficiency of 3.66 cd/A, and OFETs with outstanding μh of 1.06 cm2 (V s)−1 were demonstrated. Our results suggest that d-limonene would be a promising non-aromatic and non-chlorinated solvent for solution processing of conjugated polymers and molecules for optoelectronic device applications.  相似文献   
8.
9.
《Optical Fiber Technology》2006,12(3):238-242
We measure the system impacts due to the amplitude of group-delay (GD) ripple in single and cascaded chirped fiber Bragg gratings (CFBGs). Signals with smaller pulse width result in smaller performance variation at the same data rate. A 65-ps peak-to-peak GD ripple induces 0.9, 1.7, and 2.7 dB maximum penalties for 10, 20, and 40-Gb/s, respectively. We also find that cascading gratings with random ripple causes much less degradation than cascading gratings with the same ripple profile.  相似文献   
10.
《Materials Letters》2007,61(11-12):2259-2261
We report the formation of silver nanoclusters of average size ∼ 1.1 nm in a single step ion-exchanged silica glass. Silver clusters are formed in a glass during ion-exchange by fine-tuning the ion-exchange parameters such as salt composition, temperature and time. Such nanocluster formation during ion-exchange preserves the waveguiding properties of the ion-exchanged surface of the glass making them suitable for nonlinear waveguide device fabrication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号