首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   910篇
  免费   34篇
  国内免费   45篇
电工技术   3篇
综合类   13篇
化学工业   280篇
金属工艺   164篇
机械仪表   25篇
建筑科学   15篇
矿业工程   3篇
能源动力   52篇
轻工业   8篇
无线电   57篇
一般工业技术   297篇
冶金工业   37篇
原子能技术   4篇
自动化技术   31篇
  2024年   6篇
  2023年   63篇
  2022年   79篇
  2021年   27篇
  2020年   75篇
  2019年   42篇
  2018年   23篇
  2017年   43篇
  2016年   57篇
  2015年   51篇
  2014年   46篇
  2013年   59篇
  2012年   83篇
  2011年   56篇
  2010年   27篇
  2009年   46篇
  2008年   23篇
  2007年   35篇
  2006年   30篇
  2005年   14篇
  2004年   9篇
  2003年   11篇
  2002年   10篇
  2001年   14篇
  2000年   9篇
  1999年   13篇
  1998年   5篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1976年   1篇
排序方式: 共有989条查询结果,搜索用时 20 毫秒
1.
In this work, drying of bodies prepared by gelcasting fine submicrometre-sized zirconia particles was studied and a drying process for defect-free bodies with large cross-sections was proposed. It was found that the cracking of large bodies could be prevented by reducing the monomer content and using appropriate non-volatile cosolvents. Glycerol and polyethylene glycols with different molecular weights were used as non-volatile cosolvents in aqueous ceramic suspensions. The complex effects of the individual cosolvents on the gelcasting process and, in particular, on the drying step were investigated and explained. The applicability of individual cosolvents for the gelcasting process were discussed and their optimal use was indicated.  相似文献   
2.
SiCf/PyC/SiC and SiCf/BN/SiC mini-composites comprising single tow SiC fibre-reinforced SiC with chemical vapor deposited PyC or BN interface layers are fabricated. The microstructure evolutions of the mini-composite samples as the oxidation temperature increases (oxidation at 1000, 1200, 1400, and 1600?°C in air for 2?h) are observed by scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction characterization methods. The damage evolution for each component of the as-fabricated SiCf/SiC composites (SiC fibre, PyC/BN interface, SiC matrix, and mesophase) is mapped as a three-dimensional (3D) image and quantified with X-ray computed tomography. The mechanical performance of the composites is investigated via tensile tests.The results reveal that tensile failure occurs after the delamination and fibre pull-out in the SiCf/PyC/SiC composites due to the volatilization of the PyC interface at high temperatures in the air environment. Meanwhile, the gaps between the fibres and matrix lead to rapid oxidation and crack propagation from the SiC matrix to SiC fibre, resulting in the failure of the SiCf/PyC/SiC composites as the oxidation temperature increases to 1600?°C. On the other hand, the oxidation products of B2O3 molten compounds (reacted from the BN interface) fill up the fracture, cracks, and voids in the SiC matrix, providing excellent strength retention at elevated oxidation temperatures. Moreover, under the protection of B2O3, the SiCf/BN/SiC mini-composites show a nearly intact microstructure of the SiC fibre, a low void growth rate from the matrix to fibre, and inhibition of new void formation and the SiO2 grain growth from room to high temperatures. This work provides guidance for predicting the service life of SiCf/PyC/SiC and SiCf/BN/SiC composite materials, and is fundamental for establishing multiscale damage models on a local scale.  相似文献   
3.
《Ceramics International》2018,44(18):22473-22480
The compact green bodies, prepared via a novel solid-liquid mixing method of precursors, were successfully pyrolyzed to obtain the dense bulk SiAlCN ceramics at 1000 °C. It can be seen from their SEM that they have uniform and dense microstructure, indicating that this method can be used to prepare bulk ceramics. In order to verify that they can be used as sensor heads, their temperature-resistance characteristics and repeatability were tested. The results show that the conductive mechanism belongs to Arrhenius's Tailed-State and Extended-State in the temperature range of 500–650 °C and 650–930 °C, respectively. And it shows that SiAlCN ceramics can be used as the sensor heads for high-temperature sensors.  相似文献   
4.
Highly textured TiB2 ceramics were prepared by slip casting an aqueous suspension in a magnetic field of 9 T, followed by sintering using Field Assisted Sintering Technology (FAST). Particle size refinement by ball milling improved both the degree of texturing and densification of the material (RD > 98 %). The sintered material exhibited a Lotgering orientation factor of 0.90, with the c-axis of TiB2 oriented parallel to the magnetic field and FAST pressing direction. The texturing effect induced by the uniaxial pressing was negligible. The textured TiB2 material exhibited a significant anisotropy in mechanical properties; the values of hardness and indentation elastic modulus measured along directions transverse to the c-axis of TiB2 were 37 % and 13 % higher than the ones measured along the c-axis direction. Moreover, the specific wear rate of a surface of textured TiB2 parallel to the field was one order of magnitude lower than a surface perpendicular to the field.  相似文献   
5.
6.
The mechanical properties and thermal stability of the Al2O3/Er3Al5O12 (EAG) eutectic ceramics have been investigated at very high temperature. The emissive properties of this eutectic ceramics have also been measured and its possibilities of application to an emitter have been discussed. The present eutectic ceramic has excellent high-temperature strength characteristics, showing that tensile yielding stress is approximately 300 MPa at 1650 °C and superior thermal stability at 1700 °C in an air atmosphere. The present material shows strong selective emission bands at wavelength 1.5 μm due to Er3+ ion. The emission bands of this material are nearly coincident with the sensitive region of GaSb PV cell, therefore, the Al2O3/EAG eutectic ceramic can be regarded as one of the promising emitter materials in TPV systems.  相似文献   
7.
The fatigue-fretting damage parameter (FFDP) introduced by Ruiz is comprehensively discussed in this paper. Shortcomings and limitations of this criterion are presented resulting in a combined energetic-multiaxial enhancement (eFFDP). Specific frictional power was supposed to control the fretting damage and the critical plane approach is used to solve the multiaxial stress state in the fretting contact. The significance of the eFFDP is evaluated for the key–shaft–hub connection under combined torque and bend loading. Applying the analysis to recent fatigue tests, a comparison of stress and fretting parameters is made for different loading conditions including estimation of the fretting fatigue limit.  相似文献   
8.
《Materials Letters》2007,61(14-15):3059-3063
In order to explore the tribological potential of the dual phase (DP) steel as a wear resistant material, the wear characteristics of the dual phase (DP) steel have been investigated with varying amounts of martensite from 43 to 81 vol pct, developed by varying holding time at the intercritical annealing temperature of 780 °C. Dry sliding wear tests have been conducted on DP steels using a pin-on-disk machine under different normal loads of 61.3, 68.5, 75.7 and 82.6 N and at a constant sliding speed of 1.20 m/s. At these loads, the mechanism of wear is mainly delamination, which has been confirmed by SEM micrographs of the subsurface and wear debris of the samples. Wear and friction properties have been found to be improved with increasing martensite volume fraction in dual phase steels.  相似文献   
9.
The content and the caking index of the heavy,the dense medium and the loose medium components of coal,obtained by extraction and stripping with CS_2/N-methyl-2-pyrrolidinone mixed solvent(1:1 by volume),were studied and correlated with the caking property of raw coals.Images of the three group components after heat treatment were analyzed.The results show that both caking index(G) and maximum thickness of plastic layer(Y) of coals have a good linear relationship with the content of the medium component;the dense medium and the loose medium components are the two key factors to determine the caking property of raw coals-they are the source materials of fluidity and swelling of coal,respectively;the heavy component without the swelling and fluidity was cohered by the other components;two new indexes,which can extend current understanding of the caking properties,were introduced.  相似文献   
10.
《Synthetic Metals》2005,148(2):175-178
Data-storage and memory applications of conjugated polymers and organic semiconductors are generally probed by device current or dielectric properties to determine the storage and switching properties. In this article, we use photoluminescence as an alternate method of probing the states of the devices. We have fabricated such devices based on a polythiophene derivative, and recorded photoluminescence (PL) spectra during and after applying bias. The presence of localized charges on the backbone of the polymer has been found to modulate the PL intensity. Since the relaxation of the space charges is slow, we have shown that PL intensity can be used as a probe for memory applications to read the state of the device. PL as a probe for memory applications of polymeric materials offers an intrinsic advantage that the state can be read without affecting the device properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号