首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   4篇
电工技术   2篇
综合类   1篇
化学工业   41篇
机械仪表   1篇
矿业工程   1篇
无线电   11篇
一般工业技术   3篇
冶金工业   1篇
自动化技术   3篇
  2023年   20篇
  2022年   15篇
  2021年   2篇
  2020年   6篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2013年   2篇
  2010年   1篇
  2006年   1篇
  2000年   1篇
  1999年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有64条查询结果,搜索用时 171 毫秒
1.
为实现滤波器的小型化,基于介质集成悬置线(substrate integrated suspended line, SISL)结构提出了一种介质填充双通带滤波器的设计方案. 首先将高介电常数的介质块填充入SISL的空气腔中,提升SISL的等效介电常数,实现电路的小型化,高介电常数介质块可以直接被SISL固定;然后利用T型结连接两组工作在不同频段的滤波器从而使得两个通带相对独立;最后利用仿真软件进行优化,确定介质填充双通带滤波器的尺寸,并进行加工与测试. 仿真与测试结果表明,二者具有较好的一致性,两个通带频率内的回波损耗均优于15 dB,电路的核心尺寸为0.058λg×0.139λgg为SISL在第一通带中心频率处的导波波长). 此双通带滤波器具有小尺寸、自封装等优势,且所有层介质基板均采用低成本的FR4板材,降低了制造成本.  相似文献   
2.
In this work, uniform core-shell structure of polypyrrole wrapped on tungsten oxide nanorods (PPy@W18O49 core-shell nanorods) were synthesized via a two-step process for gas-sensing applications. The core-nanorods of W18O49 were first grown by solvothermal method with tungsten hexachloride (WCl6) as precursor. The PPy-shell layer was then formed uniformly on the solvothermally synthesized W18O49 nanorods by in-situ chemical polymerization of pyrrole monomer (Py), with sodium dodecyl benzene sulfonic acid (DBSA) as dopant and ammonium persulfate (APS) as oxidant. High dispersion of Py achieving in ethanol is proved to be crucial to form the uniform PPy-shell layer, and the layer thickness of PPy-shell is highly controlled by adjusting the Py concentration in polymeric solution. The morphology and structure of the nanocomposite were characterized systematically; it shows that the composite exhibits perfect core-shell structure of one-dimensional (1D) nanorods with average diameter of around 70–90 nm. The NH3-sensing properties of the sensors based on the PPy@W18O49 core-shell nanorods were investigated at operating temperature of 15–130 °C over NH3 concentration ranging from 1 to 200 ppm. The response magnitude of the PPy@W18O49 sensor can be affected seriously by temperature fluctuation, even in room temperature range (15–30 °C), and meanwhile, a temperature-dependent p-n response characteristic reversal is observed for the heteronanorods sensor. At much low room temperature of 15 °C, the present PPy@W18O49 nanorods show quick and sensitive response to NH3 gas mainly due to the ultrathin, uniform PPy shell and the special heterojunction effect between p-type PPy and n-type W18O49. The underlying gas-sensing mechanism is analyzed.  相似文献   
3.
We report high performance solution processed conductive inks used as contact electrodes for printed organic field effect transistors (OFETs). Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) electrodes show highly improved very low sheet resistance of 65.8 ± 6.5 Ω/square (Ω/□) by addition of dimethyl sulfoxide (DMSO) and post treatment with methanol (MeOH) solvent. Sheet resistance was further improved to 33.8 ± 8.6 Ω/□ by blending silver nanowire (AgNW) with DMSO doped PEDOT:PSS. Printed OFETs with state of the art diketopyrrolopyrrole-thieno[3,2-b]thiophene (DPPT-TT) semiconducting polymer were demonstrated with various solution processable conductive inks, including bare, MeOH treated PEDOT:PSS, single wall carbon nanotubes, and hybrid PEDOT:PSS-AgNW, as the source and drain (S/D) electrode by spray printing using a metal shadow mask. The highest field effect mobility, 0.49 ± 0.03 cm2 V−1 s−1 for DPPT-TT OFETs, was obtained using blended AgNW with DMSO doped PEDOT:PSS S/D electrode.  相似文献   
4.
Herein, the improvement of the microwave dielectric properties and sintering characteristics of Zn1?xBixVxW1?xO4(x = 0–0.15)-based ceramics is reported. The results showed that an appropriate amount of doping could not only reduce the optimum sintering temperature from 1100° to 900°C, but also enhance the densification of the microstructures and increase the Q×f value from 5351 to 42525 GHz. Additionally, various structural parameters including the phase composition, crystal structure, vibrational and chemical bond characteristics that are correlated with the dielectric properties were systematically investigated. By considering the chemical bond characteristics, the first-principles calculations and the acquired Raman spectra, the interaction between W-O is stronger than Zn-O in the ZnWO4 structure, while the interaction between V-O is stronger than Bi-O in BiVO4. Interestingly, when the Zn0.97Bi0.03V0.03W0.97O4-based ceramics were sintered at 900 °C, improved microwave dielectric properties were acquired (εr =18.32, Q×f=42525 GHz, τf=?67.51 ppm/°C), which provides a promising candidate in low-temperature co-fired ceramics technology.  相似文献   
5.
A series of high-k Ba4Nd28/3Ti18-yGa4y/3O54 (0≤y≤2, BNTG) ceramics with temperature stable and ultra-low dielectric loss were synthesized via the conventional solid-state reaction. The main phase of all BNTG ceramics demonstrated an orthorhombic tungsten-bronze structure, but the impurity phase (gallium-rich phase) was found in BNTG (y = 2) ceramic. Partial substitution of Ga3+ for Ti4+ in B-site was a valid method to improve the temperature stability and dielectric loss of BNTG ceramics. The variation of εr values of BNTG ceramics was dominated by the ionic polarizability. The ultra-low dielectric loss (ultra-high Q × f values) was associated with grain size, suppression of Ti3+ and impurity phase. The decrease of TCF values was highly dependent on the tilting of Ti-O octahedra and impurity phase. Finally, outstanding combination dielectric characteristics were achieved for BNTG microwave ceramics at y = 1.5 (εr = 72.8, Q × f = 14,600 GHz, TCF=+4.1 ppm/°C) and at y = 2 (εr = 70.3, Q × f = 15,500 GHz, TCF=+3.9 ppm/°C).  相似文献   
6.
ABSTRACT

Normalized difference vegetation index (NDVI) has been used to conduct important research on plant growth and vegetation productivity. In this paper, a new approach to predict NDVI based on precipitation in the grass-growing season for the arid and semi-arid grassland is proposed using time-delay neural network (TDNN). To intuitively know the ability of TDNN to learn the relationship between NDVI and precipitation and to predict NDVI, the performance of the TDNN model is compared with back propagation neural network (BPNN) trained with the same data. The results indicate that TDNN works well to predict precipitation. Moreover, the relationship between precipitation and NDVI can be predicted accurately by the proposed TDNN model. The results show the goodness-of-fit between the observed NDVI and predicted NDVI measured by the determination coefficient of R2 being 0.999 from the TDNN model, with the mean absolute percentage error, mean absolute error, and root-mean-square error to be 0.23%, 0.20, and 0.19, respectively. The analysis shows that the proposed method can result in an accurate NDVI prediction. Thus, the algorithm is applied to predict the NDVI during the grass-growing season for the validation of the approach. This validation results suggest the potential application of this approach for reduction of overgrazing pressure and vegetation restoration in the arid and semi-arid grassland.  相似文献   
7.
《Ceramics International》2023,49(19):31539-31548
Gas turbines efficiency growth is primarily associated with an increase in the operating temperature of the combustion chamber, which places new stringent requirements on the materials of thermal barrier coatings. Strontium cerate doped with tin SrCe1- xSnxO3 where x = 0.1 … 0.5, was proposed as a promising material. The research has shown that the lightly doped solid solution SrCe1-xSnxO3 has an orthorhombic Pnma structure at x < 0.3, whereas at a high content of Sn4+ the monoclinic structure P21/m becomes more favorable. Thermogravimetric analysis (TGA) in reducing atmosphere (5%H2 in Ar) shows no mass lost as a result of unchangeable charge of Ce4+ and Sn4+. An increase in the distortion of the crystal lattice, due to the large difference in the ionic radii of Ce4+ and Sn4+, leads to a deterioration in the symmetry of the crystal lattice, a reduction of thermal conductivity (from 1.9 to 1.4 W m−1 K−1 at 1000 °C) and at the same time, growth of hardness and porosity. The increase in porosity, along with an increase in the required temperature of solid-state synthesis, indicates an enhancement in the melting point of the obtained materials. For the compounds with an orthorhombic structure, the thermal expansion coefficient increases with a growth in the Sn content, achieving a highest point 12.47·10−6 K−1 at 1100 °C for x = 0.3. The combination of the revealed properties and their comparison with advanced refractories makes the solid solution, primarily SrCe0.5Sn0.5O3, a promising material for application as thermal barrier coatings.  相似文献   
8.
Poly(4-styrenesulfonic acid) (PSSA) doped polypyrrole (PPy)/tungsten oxide (WO3)/reduced graphene oxide (rGO) hybrid nanocomposite have been successfully synthesized using appropriate amounts of PSSA, pyrrole monomer, WO3, and rGO dispersed in aqueous solution through in situ chemical oxidation polymerization. Here, a simple spin coating method was used to fabricate a nitric oxide (NO) gas sensor composed of the aforementioned nanocomposite on a surface acoustic wave (SAW) resonator. This sensor can detect NO gas at concentrations of 1–110 parts per billion (ppb) at room temperature in dry air, with a sensitivity of 12 Hz/ppb and response and recovery times of <2 min. Moreover, its limit of detection (LOD) is 0.31 ppb for a signal to noise ratio of 3. It demonstrates repeatability, fast response, and recovery at room temperature. Moreover, its sensory performance remains highly stable over 30 days with only a 6.3% decrease in sensitivity. In addition, the sensor is highly selective for NO, even when nitrogen dioxide, ammonia, and carbon dioxide are applied as interfering gases. The inclusion of rGO (with large specific surface area) and the synergic effect of n-type WO3 nanoparticles in the p-type PPy matrix (leading to p-n heterojunction region formation) possibly underlie the efficient sensing performance of our sensor.  相似文献   
9.
Cao  Qingjie  Shi  Zaifeng  Wang  Rong  Wang  Pumeng  Yao  Suying 《Multimedia Tools and Applications》2020,79(37-38):27091-27114
Multimedia Tools and Applications - Histogram equalization (HE) is a classical enhancement method for image processing. However, conventional HE techniques have poor performance in terms of...  相似文献   
10.
Journal of Materials Science: Materials in Electronics - The VO2(B)/rGO composite structure was proposed to improve the gas sensitivity response of VO2(B) at room temperature (25&nbsp;°C)...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号