首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1877篇
  免费   104篇
  国内免费   15篇
电工技术   8篇
综合类   1篇
化学工业   529篇
金属工艺   146篇
机械仪表   56篇
建筑科学   12篇
矿业工程   11篇
能源动力   211篇
轻工业   108篇
水利工程   8篇
石油天然气   15篇
无线电   212篇
一般工业技术   464篇
冶金工业   50篇
原子能技术   20篇
自动化技术   145篇
  2024年   7篇
  2023年   198篇
  2022年   72篇
  2021年   95篇
  2020年   113篇
  2019年   89篇
  2018年   61篇
  2017年   128篇
  2016年   104篇
  2015年   102篇
  2014年   120篇
  2013年   80篇
  2012年   60篇
  2011年   47篇
  2010年   62篇
  2009年   56篇
  2008年   22篇
  2007年   63篇
  2006年   71篇
  2005年   48篇
  2004年   26篇
  2003年   35篇
  2002年   37篇
  2001年   45篇
  2000年   23篇
  1999年   37篇
  1998年   12篇
  1997年   10篇
  1996年   11篇
  1995年   10篇
  1994年   6篇
  1993年   10篇
  1992年   7篇
  1991年   6篇
  1990年   12篇
  1989年   13篇
  1988年   16篇
  1987年   44篇
  1986年   36篇
  1985年   2篇
排序方式: 共有1996条查询结果,搜索用时 46 毫秒
1.
The electrode ionomer is a key factor that significantly affects the catalyst layer morphology and fuel cell performance. Herein, sulfonated poly(arylene ether sulfone)-based electrode ionomers with polymers of various molecular weights and alcohol/water mixtures were prepared, and those comprising the alcohol/water mixture showed a higher performance than the ones prepared using higher boiling solvents, such as dimethylacetamide; this is owing to the formation of the uniformly dispersed ionomer catalyst layer. The relation between ionomer molecular weight for the same polymer structure and the sulfonation degree was investigated. Because the chain length of polymer varies with molecular weight and chain entanglement degree, its molecular weight affects the electrode morphology. As the ionomer covered the catalyst, the agglomerates formed were of different morphologies according to their molecular weight, which could be deduced indirectly through dynamic light scattering and scanning electron microscopy. Additionally, the fuel cell performance was confirmed in the current-voltage curve.  相似文献   
2.
The results of formation of the high density effective scintillation ceramics consisting of two compounds of the cubic symmetry, LuAG:Ce and Lu2O3 (LuAG:Ce + Lu2O3), are described. Powders of a novel material LuAG:Ce + Lu2O3 were synthesized by co-precipitation method. The introduction of Lu2O3 into LuAG:Ce was shown to increase the density of the ceramics obtained and modify its scintillation properties.  相似文献   
3.
Improving piezoelectric performance is always favorable to further enhance the sensitivity and accuracy of piezoelectric devices. Here, a complex piezoelectric system of Pb(Ni1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3-Pb(Hf0.1Ti0.9)O3 is designed and investigated in detail. Optimized piezoelectric response of ~ 880 pC/N is achieved at the composition of 0.51PNN-0.09PYN-0.40PHT. The characterization of TEM and In-situ high-energy synchrotron diffraction indicate that nanodomain growth and microdomain switching occurs in succession at around coercive electric field. Most interestingly, the coexisted tetragonal and rhombohedral-like phase transforms into multiple monoclinic-like phases with polarization vectors aligned as close to the electric field direction as possible under the strong electric field. The enhanced polarization instability in this complex morphotropic phase boundary sample should be ascribed to the strong local heterogeneity. The novel polarization rotation behavior found in this work would be important guidance for designing high-performance piezoceramics.  相似文献   
4.
《Ceramics International》2022,48(8):10420-10427
Precision glass molding (PGM) is a recently developed method to fabricate glass microgroove components. Lead glass is commonly used as an optical material due to its high refractive index and low transition temperature. A nickel-phosphorous (Ni–P) plated mold is traditionally employed in the PGM process for microstructures optics. However, leaded glass is subject to color change and can blacken during the PGM process, reducing the light transmittance of microgrooves. In this paper, an equation for the redox reaction between Ni and Pb is proposed, which is based on the diffusion of inner Ni atoms to the surface of the mold and the standard electrode potential of the Pb ions in leaded glass. A viscoelastic constitutive model of the glass is established to simulate the compression stress distribution during molding. Finally, the effects of molding pressure, molding temperature, and mold material on glass blackening are studied. The results show that the blackening of leaded glass is caused by Pb enriching the surface. The rise in molding stress and temperature increases the deformation of Ni–P plating, which promotes the diffusion of Ni atoms. By adding a titanium incorporated diamond-like carbon (Ti-DLC) coating, the deformation of the Ni–P plating during molding is suppressed, and the diffusion of Ni atoms can be prevented. In this way, the blackening of leaded glass can be prevented.  相似文献   
5.
Most researches on graphene/polymer composites are focusing on improving the mechanical and electrical properties of polymers at low graphene content instead of paying attention to constructing graphene’s macroscopic structures. In current study the homo-telechelic functionalized polyethylene glycols (FPEGs) were tailored with π-orbital-rich groups (namely phenyl, pyrene and di-pyrene) via esterification reactions, which enhanced the interaction between polyethylene glycol (PEG) molecules and chemical reduced graphene oxide (RGO) sheets. The π–π stacking interactions between graphene sheets and π-orbital-rich groups endowed the composite films with enhanced tensile strength and tunable electrical conductivity. The formation of graphene network structure mediated by the FPEGs fillers via π–π stacking non-covalent interactions should account for the experimental results. The experimental investigations were also complemented with theoretical calculation using a density functional theory. Atomic force microscope (AFM), scanning electron microscope (SEM), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), UV–vis and fluorescence spectroscopy were used to monitor the step-wise preparation of graphene composite films.  相似文献   
6.
Buffalo milk proteins (casein, co-precipitate or whey protein concentrate) were phosphorylated with phosphorus oxychloride (POCl3) at three different pH values (5.0, 7.0 and 9.0). The solubilities of phosphorylated milk proteins were examined over the pH range 3.0–9.0 in water and ionic (0.1 m NaCl or 10–70 mm Ca2+) systems. The solubilities of buffalo milk proteins decreased at pH 3.0, while there was an increase in the solubilities of casein and co-precipitate near their isoelectric points upon phosphorylation. Solubilities of these phosphorylated milk proteins were pH dependent in 0.1 m NaCl but there was a decrease in their solubilities with increase in calcium ion concentration. This alteration could be due to the shifting of isoionic points of phosphorylated buffalo milk proteins towards acidic pH.  相似文献   
7.
Crack opening displacement measurements on a sintered reaction-bonded Si3N4 ceramic obtained in bending tests with edge-V-notched specimens were evaluated. A procedure is proposed which allows a straight-forward evaluation of the experimental results in order to obtain the bridging stresses as a function of crack opening displacements. Bridging stresses up to 160 MPa were found acting over a distance of about 0.4 μm. In addition crack profile measurements were performed for Vickers indentation cracks which could approximately be described by use of the bridging relation obtained.  相似文献   
8.
Harmful algal blooms, which are considered a serious environmental problem nowadays, occur in coastal waters in many parts of the world. They cause acute ecological damage and ensuing economic losses, due to fish kills and shellfish poisoning as well as public health threats posed by toxic blooms. Recently, data-driven models including machine-learning (ML) techniques have been employed to mimic dynamics of algal blooms. One of the most important steps in the application of a ML technique is the selection of significant model input variables. In the present paper, we use two extensively used ML techniques, artificial neural networks (ANN) and genetic programming (GP) for selecting the significant input variables. The efficacy of these techniques is first demonstrated on a test problem with known dependence and then they are applied to a real-world case study of water quality data from Tolo Harbour, Hong Kong. These ML techniques overcome some of the limitations of the currently used techniques for input variable selection, a review of which is also presented. The interpretation of the weights of the trained ANN and the GP evolved equations demonstrate their ability to identify the ecologically significant variables precisely. The significant variables suggested by the ML techniques also indicate chlorophyll-a (Chl-a) itself to be the most significant input in predicting the algal blooms, suggesting an auto-regressive nature or persistence in the algal bloom dynamics, which may be related to the long flushing time in the semi-enclosed coastal waters. The study also confirms the previous understanding that the algal blooms in coastal waters of Hong Kong often occur with a life cycle of the order of 1–2 weeks.  相似文献   
9.
Soft-magnetic ferrite has advantages of high initial magnetic permeability, high electric resistivity, low loss and low cost in the high-frequency alternating field. Considering the characters of soft-magnetic ferrite, this paper uses a soft-magnetic ferrite ring as stator core and presents a novel field-weakening structure of high speed PM motors. Based on this structure, a novel field-weakening method of PM motors can be presented. The equivalent reluctance of permanent magnetic field circuit can be changed by altering saturation degree of soft-magnetic ferrite core in this method. For the convenience of analysis and calculation, considering the magnetic field distribution in the motors, this paper deduces an equivalent two-dimensional finite element model of three-dimensional magnetic field, by which the field-weakening parameters of high speed PM motor can be conveniently analyzed. The simulation results of finite element model prove: the field-weakening structure of high speed PM motor based on soft-magnetic ferrite, presented in this paper, is valid and feasible, offers a valid and applicative method for field-weakening control of high speed PM motor.  相似文献   
10.
采用极限氧指数法、热重分析和差示扫描量热分析等技术和手段研究了氢氧化镁(MH)对乙烯-丙烯酸丁酯共聚物(EBA)的阻燃性能、力学性能及热降解行为的影响。结果表明:EBA/MH复合材料的拉伸强度、断裂伸长率和熔体流动速率均随着MH用量的增加而降低;当MH的质量分数为60%时,复合材料的极限氧指数可达34.3%;MH通过分解吸热可提高EBA的热稳定性;MH表面羟基与EBA的反应性基团发生相互作用,以及EBA发生酯裂解后形成的羧酸与MH反应形成热稳定性更高的离聚物,均可提高EBA在高温下的热稳定性,并改变EBA的热降解历程。MH的“热阱”机理对EBA的阻燃起着很重要的作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号