首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   798篇
  免费   79篇
  国内免费   1篇
综合类   26篇
化学工业   62篇
金属工艺   6篇
机械仪表   3篇
建筑科学   3篇
矿业工程   1篇
能源动力   62篇
轻工业   639篇
水利工程   2篇
石油天然气   29篇
无线电   3篇
一般工业技术   28篇
冶金工业   2篇
原子能技术   1篇
自动化技术   11篇
  2024年   18篇
  2023年   57篇
  2022年   61篇
  2021年   95篇
  2020年   53篇
  2019年   52篇
  2018年   40篇
  2017年   39篇
  2016年   84篇
  2015年   25篇
  2014年   47篇
  2013年   42篇
  2012年   38篇
  2011年   46篇
  2010年   19篇
  2009年   15篇
  2008年   8篇
  2007年   31篇
  2006年   25篇
  2005年   17篇
  2004年   2篇
  2003年   6篇
  2002年   12篇
  2001年   8篇
  2000年   3篇
  1999年   7篇
  1998年   4篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1990年   2篇
  1988年   2篇
  1987年   6篇
  1986年   7篇
排序方式: 共有878条查询结果,搜索用时 31 毫秒
1.
The present work developed a spectral splitting hybrid photovoltaic/thermal (PV/T) system based on polypyrrole nanofluid. This hybrid PV/T system can overcome the limitation of temperature in traditional PV/T, and achieve a high-temperature thermal output. In this system, the polypyrrole nanofluid employed in the spectral splitting filter can absorb the solar radiation that can't be efficiently utilized by PV cell unit, and convert it into medium-temperature thermal energy. The principle and methodology of the experimental system design was discussed, and the effect of particle concentration on the performance of system was investigated as well. The present work not only verifies the application potential of polypyrrole nanofluid in spectral splitting PV/T system, but also obtains some important rules on the performance. The results indicate that the temperature of nanofluid and the PV efficiency of cell unit itself increases with the particle concentration, but the thermal efficiency decreases simultaneously. The maximum overall efficiency of this hybrid PV/T system with polypyrrole nanofluid filter was 25.2%, which was 13.3% higher than that without filter. More importantly, the medium-temperature thermal energy can be harvested in such a hybrid system. Furthermore, an optimal particle concentration can probably realize a higher overall efficiency.  相似文献   
2.
This study presents the development of a novel inverse dynamic analysis-maximum power point tracking (IDA-MPPT) scheme in a hybrid energy harvesting system between thermoelectric module (TEM) and solar array (SA). The proposed method initially changes the harvested voltage response from both sources to be the third-order exponential function. This input function selection is based on the capability of this function to stabilize the initial response system and maintain its final position despite a prolonged response time. The mV voltage value from TEM is easily boosted up to nearly 5 V using this method. With this hybridization, the total obtained voltage is doubled to become 9.7 V, which results in a total power of 0.722 W. Furthermore, the method also allows for a fast tracking system, which enables faster voltage boosting and supercapacitor charging. The supercapacitor only requires less than 5 min to complete charging and boost the voltage to almost 5 V. Thus, a satisfactory value is obtained as compared with that of the TEM system with a chosen MPPC board.  相似文献   
3.
Three novel alkaline guanidine ionic liquids as amphiphilic catalysts have been successfully synthesized for two-phase transesterification, which can efficiently improve the catalytic activity for the synthesis of biodiesel. They were characterized by a series of techniques including 1H NMR, thermal stability, electronegativity (DFT calculation), basicity and conductivity. It was demonstrated that 1,1,3,3-trimethyl-2-octyl-guanidine hydroxide(IL3) exhibited better catalytic activity compared with other base guanidine ionic liquid catalysts, which was related to the better basicity and electronegativity of the ILs. The experimental results indicated that catalytic performance was relative to both enough alkaline center and conductivity of ionic liquid catalysts, but the former was a main factor in the catalytic system. The catalytic performance also revealed that optimum catalyst dosage was about 6 wt.%, the appropriate reaction temperature was about 55 °C, the optimum n(Methanol)/n(Soybean Oil) for the biodiesel synthesis was about 15:1 and the suitable reaction time was 4 h on the basis of biodiesel yield of 97%. In addition, the reaction mechanism of the amphiphilic catalyst was illuminated by the interaction between the methoxyl group and the carbonyl group of the triglyceride after activating for two-phase transesterification.  相似文献   
4.
Cryoconcentration combined with a cascade effect was used to concentrate skim milk up to 25.12% total dry matter. Size, shape, and inter-micellar distance of casein micelles were characterized by ZetasizerNano-ZS, transmission electron microscopy, and ImageJ analyses. Flow properties of the cryoconcentrated skim milk were evaluated during 5 weeks of storage under refrigerated condition at 4 °C. Milk color was also evaluated according to the L*, a*, and b* system. The cryoconcentrated skim milk obtained after three cryoconcentration cycles was characterized by a monomodal distribution of its micelles with a tendency to smaller casein micelles. Approximately 60% of the total micellar volume was occupied by the casein micelles with a size of 100–200 nm, less than 18% of the volume with a size of 50–100 nm and only less than 1% was occupied by micelles with a size > 350 nm. This result shows that cryoconcentration changed the distribution of the mean size of the casein micelles to smaller units. No significant difference was observed on the inter-micellar distance. Cryoconcentration significantly improved the color of skim milk by increasing the L* value up to 67 which was similar to that of whole milk. Transition from a Newtonian to a non-Newtonian behavior was observed from the fourth week storage with a slight increase of casein micelle size.Industrial relevanceA concentration procedure of skim milk based on a complete block cryoconcentration technique was proposed. Application of this sub-zero technology permitted the concentration of skim milk total dry matter up to 25%. The casein micelle size was positively affected by moving the major part of the micelles toward the smaller size, whereas the inter-micellar distance was not affected. This new knowledge can be exploited in milk-based products to enhance the product stability. The cryoconcentrated skim milk color was positively affected since its L* value, which represents the milk whiteness, was significantly improved. The flow behavior of the cryoconcentrated milk was of Newtonian type up to 4 weeks of storage at 4 °C. The generated knowledge in this study can be easily used by the milk processing industry in order to make stable milk product with high dry matter content without adding milk powder, which negatively affects the product sensory properties (floury consistency).  相似文献   
5.
Soluble fibers, like pectin, are known to influence the physicochemical processes during the digestion of dietary fat and may therefore affect the absorption of lipophilic micronutrients such as carotenoids. The objective of the current work was to investigate whether the pectin concentration and degree of methyl-esterification (DM) influence the bioaccessibility of carotenoids loaded in the oil phase of oil-in-water emulsions. The in vitro β-carotene bioaccessibility was determined for different oil-in-water emulsions in which 1 or 2% citrus pectin with a DM of 99%, 66% and 14% was present. Results show that pectin concentration and DM influence the initial emulsion properties. The most stable emulsions with the smallest oil droplets (D(v,0.9) of 15–16 μm) were obtained when medium or high methyl-esterified pectin was present in a 2% concentration while gel-like pectin structures (D(v,0.9) of 114 μm), entrapping oil droplets, were observed in the case where low methyl-esterified pectin was present in the aqueous emulsion phase. During in vitro stomach digestion, these gel-like structures, entrapping β-carotene loaded oil droplets, significantly enlarged (D(v,0.9) of 738 μm), whereas the emulsion structure could be preserved when the medium or high methyl-esterified pectin was present. Initial emulsion viscosity differences, due to pectin concentration and especially due to pectin DM, largely disappeared during in vitro digestion, but were still significant after the stomach digestion phase. The observed differences in emulsion structure before and during in vitro digestion only resulted in a significant difference between emulsions containing low methyl-esterified pectin (β-carotene bioaccessibility of 33–37%) and medium/high methyl-esterified pectin (β-carotene bioaccessibility of 56–62%).  相似文献   
6.
To determine the compositions of Forsythia suspensa leaves tea (FSLT) and its safety, the chemical compounds were analysed with some methods, and the toxicity was evaluated in Kunming mice and Wistar rats. The results showed that FSLT contained rich flavonoid, lignans, triperpene acids, amino acids, and mineral elements. In the acute toxicity study, none of the mice died, and no obvious poisoning symptoms were observed after 14 days in mice at the dose of 15 mg/g·body weight (bw) FSLT; in the sub-chronic toxicity, no abnormal or dead rat was found at the dose of 1, 3, and 10 mg/g·bw during 90 days feeding administration; there was no significant difference in bw and food consumption; no significant differences were found in each hematology and serum biochemistry parameter and organ/body weight ratio comparing with the control experimental group. The results revealed that the FSLT has low or no toxicity via oral administration. Therefore, FSLT is very suitable and safe to be used as a new resource food.  相似文献   
7.
In the present study, the potential of soy protein isolate (SPI)–κ-carrageenan (κ-CG) complex as a protective carrier for quercetagetin was investigated at different pH values (pH 2.3 and 6.5). The particle size of the ternary aggregates was slightly increased at pH 2.3, yet dramatically decreased at pH 6.5 with increasing quercetagetin concentration. Moreover, the negative ζ-potential of the ternary aggregates was increased significantly (p < 0.05) at pH 6.5. The addition of quercetagetin to the SPI–κ-CG complex could highly quench the intrinsic fluorescence of SPI. Circular dichroism spectra further suggested that the bound quercetagetin could induce the rise of β-sheet and β-turn contents at the cost of α-helix and unordered coil fractions of SPI. In addition, quercetagetin could increase the viscoelasticity of the ternary aggregates at both pH. Furthermore, the SPI–κ-CG complex was found to be superior to single SPI or κ-CG in terms of improving light stability and radical scavenging ability of quercetagetin.  相似文献   
8.
The conversion of fatty acid methyl ester (FAME) from triglycerides using heterogeneous catalysis has gained increasing interest due to the prospect of increased yield at reduced operating costs and reaction conditions. In this paper, meso-porous hydrotalcite was used to catalyze jatropha oil into FAME with relatively higher yield at atmospheric pressure and relatively low reaction temperature. The molar ratio of methanol to oil required was relatively low and the conversion was completed within few hours of reaction time. The reaction was promoted when moderate calcination temperature was applied, the disordered structure of the catalyst was maintained, counterbalance anions was removed, and phase transitions within the oxide lattice was induced. Despite the observed deactivation during successive reaction cycles due to adsorption of residual triglycerides, the catalyst performance was restored effectively by air-re-calcination.  相似文献   
9.
Dynamic stall (DS) on a wind turbine is encountered when the sectional angles of attack of the blade rapidly exceeds the steady-state stall angle of attack due to in-flow turbulence, gusts and yaw-misalignment. The process is considered as a primary source of unsteady loads on wind turbine blades and negatively influences the performance and fatigue life of a turbine. In the present article, the control requirements for DS have been outlined for wind turbines based on an in-depth analysis of the process. Three passive control methodologies have been investigated for dynamic stall control: (1) streamwise vortices generated using vortex generators (VGs), (2) spanwise vortices generated using a novel concept of an elevated wire (EW), and (3) a cavity to act as a reservoir for the reverse flow accumulation. The methods were observed to delay the onset of DS by several degrees as well as reduce the increased lift and drag forces that are associated with the DSV. However, only the VG and the EW were observed to improve the post-stall characteristics of the airfoil.  相似文献   
10.
An improved kinetic model based on thermal decomposition of biomass constituents, i.e. cellulose, hemicellulose and lignin, is developed in the present study. The model considers the independent parallel reactions of order n producing volatiles and charcoal from each biomass constituent. While estimating the kinetic parameters, the order of degradation of biomass constituents is also checked and found to be matching with the order of degradation reported in the literature. The results of thermo-gravimetric analysis of Jatropha de-oiled cakes are used to find the kinetic parameters. The experimental runs are carried out using a thermo-gravimetric analyzer (TGA 4000, Perkin Elmer). TGA study is performed in a nitrogen atmosphere under non-isothermal conditions at different heating rates and the thermal decomposition profiles are used. The model is simulated using finite difference method to predict the pyrolysis rate. The corresponding parameters of the model are estimated by minimizing the square of the error between the model predicted values of residual weight fraction and the experimental data of thermogravimetry. The minimization of square of the error is performed using non-traditional optimization technique logarithmic differential evolution (LDE).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号