首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
化学工业   6篇
轻工业   8篇
石油天然气   3篇
无线电   1篇
一般工业技术   11篇
  2025年   1篇
  2024年   5篇
  2023年   9篇
  2022年   3篇
  2021年   7篇
  2017年   1篇
  2015年   2篇
  2006年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
    
Chondroitin sulfate (CS) is a well-known bioactive substance with multiple biological functions, which can be extracted from animal cartilage or bone. Sturgeon, the largest soft bone animal with ~20% cartilage content, is a great candidate for CS production. Our recent study confirmed the role of sturgeon chondroitin sulfate (SCS) in reducing colorectal cancer cell proliferation and tumor formation. Here, we further studied the effect of SCS on modulating gut microbiome structure in colorectal cancer bearing mice. In this study, the transplanted tumor mice model was constructed to demonstrate that SCS can effectively halt the growth of transplanted colorectal tumor cells. Next, we showed that SCS significantly altered the gut microbiome, such as the abundance of Lactobacillales, Gastranaerophilales, Ruminiclostridiun_5 and Ruminiclostridiun_6. According to linear discriminant analysis (LDA) and abundance map analysis of the microbial metabolic pathways, the changes in microbial abundance led to an increase of certain metabolites (e.g., Phe, Tyr, and Gly). Fecal metabolome results demonstrated that SCS can significantly reduce the amount of certain amino acids such as Phe, Pro, Ala, Tyr and Leu presented in the feces, suggesting that SCS might inhibit colorectal cancer growth by modulating the gut microbiome and altering the production of certain amino acids. Our results revealed the therapeutic potential of SCS to facilitate treatment of colorectal cancer. This study provides insights into the development of novel food-derived therapies for colorectal cancer.  相似文献   
2.
    
Mitochondria, as the main site of cellular energy metabolism and the generation of oxygen free radicals, are the key switch for mitochondria-mediated endogenous apoptosis. Ca2+ is not only an important messenger for cell proliferation, but it is also an indispensable signal for cell death. Ca2+ participates in and plays a crucial role in the energy metabolism, physiology, and pathology of mitochondria. Mitochondria control the uptake and release of Ca2+ through channels/transporters, such as the mitochondrial calcium uniporter (MCU), and influence the concentration of Ca2+ in both mitochondria and cytoplasm, thereby regulating cellular Ca2+ homeostasis. Mitochondrial Ca2+ transport-related processes are involved in important biological processes of tumor cells including proliferation, metabolism, and apoptosis. In particular, MCU and its regulatory proteins represent a new era in the study of MCU-mediated mitochondrial Ca2+ homeostasis in tumors. Through an in-depth analysis of the close correlation between mitochondrial Ca2+ and energy metabolism, autophagy, and apoptosis of tumor cells, we can provide a valuable reference for further understanding of how mitochondrial Ca2+ regulation helps diagnosis and therapy.  相似文献   
3.
    
Spices are a globally traded commodity which has been found to be adulterated with forbidden Sudan dyes. This work proposes a screening method for determining the adulteration of paprika varieties (mild, hot and smoked) with Sudan I dye, based on constant-wavelength synchronous fluorescence spectroscopy with multivariate classification. Different wavelength-intervals (Δλ) were evaluated. Classification models were built with Partial Least Squares-Discriminant Analysis (PLS-DA) at two Sudan I dye concentration levels (1 and 5 mg L−1) and they were tested with samples at a lower level (0.5 mg L−1). Classification results were quite satisfactory when a strategy based on first-derivative spectra was used for improving classification results. Δλ = 60 nm was chosen as the optimum wavelength interval giving a 100% of sensitivity and specificity. These results are promising because the risk of assigning adulterated samples as safe to be consumed is highly minimized. The proposed method is feasible, rapid and simple taking advantage of Sudan I fluorescence phenomena in a direct way.  相似文献   
4.
    
Realizing high-precise and adjustable regulation of engineering nanozyme is important in nanotechnology. Here, Ag@Pt nanozymes with excellent peroxidase-like and antibacterial effects are designed and synthesized by nucleic acid and metal ions coordination-driven one-step rapid self-assembly. The adjustable NA-Ag@Pt nanozyme is synthesized within 4 min using single-stranded nucleic acid as templates, and peroxidase-like enhancing FNA-Ag@Pt nanozyme is received by regulating functional nucleic acids (FNA) based on NA-Ag@Pt nanozyme. Both Ag@Pt nanozymes that are developed not only has simple and general synthesis approaches, but also can produce artificial precise adjustment and possess dual-functional. Moreover, when lead ion-specific aptamers as FNA are introduced to NA-Ag@Pt nanozyme, the Pb2+ aptasensor is successfully constructed by increasing electron conversion efficiency and improving the specificity of nanozyme. In addition, both nanozyme has good antibacterial properties, with ~100% and ~85% antibacterial efficiency against Escherichia coli and Staphylococcus aureus, respectively. This work provides a synthesis method of novelty dual-functional Ag@Pt nanozymes and successful application in metal ions detection and antibacterial agents.  相似文献   
5.
    
Disruption of the microbial structure of intestinal bacteria due to a high-fat diet (HFD) is closely associated with metabolic disorders, such as obesity and type 2 diabetes. Probiotics are known to modulate the gut microbiota; therefore, we demonstrated the capability of Lactobacillus paracasei N1115 (LC-N1115) to attenuate obesity. Four-week-old male C57BL/6J mice were fed a HFD for 12 weeks to induce obesity and were then randomized to supplemented placebo or LC-N1115 treatment group for another 12 weeks. LC-N1115 treatment reduced weight gain and liver fat accumulation as well as triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels. The administration of LC-N1115 suppressed the expression of fatty acid synthase, interleukin-1 β, and toll-like receptor 4. Notably, the operational taxonomic units that negatively and positively correlated with the obesity phenotypes were enriched and reduced, respectively, in the LC-N1115 treatment group. These results indicate that LC-N1115 attenuates obesity by modulating the gut microbiota and the expression of lipid synthesis and proinflammatory cytokine genes.  相似文献   
6.
    
Although bioactive compounds (BCs) have many important functions, their applications are greatly limited due to their own defects. The development of nanocarriers (NCs) technology has gradually overcome the defects of BCs. NCs are equally important as BCs to some extent. Self-assembly (SA) methods to build NCs have many advantages than chemical methods, and SA has significant impact on the structure and function of NCs. However, the relationship among SA mechanism, structure, and function has not been given enough attention. Therefore, from the perspective of bottom-up building mechanism, the concept of SA-structure-function of NCs is emphasized to promote the development of SA-based NCs. First, the conditions and forces for occurring SA are introduced, and then the SA basis and molecular mechanism of protein, polysaccharide, and lipid are summarized. Then, varieties of the structures formed based on SA are introduced in detail. Finally, facing the defects of BCs and how to be well solved by NCs are also elaborated. This review attempts to describe the great significance of constructing artificial NCs to deliver BCs from the aspects of SA-structure-function, so as to promote the development of SA-based NCs and the wide application of BCs.  相似文献   
7.
    
Metabolic syndrome (MetS) is a set of complex, chronic inflammatory conditions that are characterized by central obesity and associated with an increased risk of cardiovascular diseases. In recent years, microRNAs (miRNAs) have become an important type of endocrine factors, which play crucial roles in maintaining energy balance and metabolic homeostasis. However, its unfavorable properties such as easy degradation in blood and off-target effect are still a barrier for clinical application. Nanosystem based delivery possess strong protection, high bioavailability and control release rate, which is beneficial for success of gene therapy. This review first describes the current progress and advances on miRNAs associated with MetS, then provides a summary of the therapeutic potential and targets of miRNAs in metabolic organs. Next, it discusses recent advances in the functionalized development of classic delivery systems (exosomes, liposomes and polymers), including their structures, properties, functions and applications. Furthermore, this work briefly discusses the intelligent strategies used in emerging novel delivery systems (selenium nanoparticles, DNA origami, microneedles and magnetosomes). Finally, challenges and future directions in this field are discussed provide a comprehensive overview of the future development of targeted miRNAs delivery for MetS treatment. With these contributions, it is expected to address and accelerate the development of effective NA delivery systems for the treatment of MetS.  相似文献   
8.
    
Mitochondria are vital to life and provide biological energy for other organelles and cell physiological processes. On the mitochondrial double layer membrane, there are a variety of channels and transporters to transport different metal ions, such as Ca2+, K+, Na+, Mg2+, Zn2+ and Fe2+/Fe3+. Emerging evidence in recent years has shown that the metal ion transport is essential for mitochondrial function and cellular metabolism, including oxidative phosphorylation (OXPHOS), ATP production, mitochondrial integrity, mitochondrial volume, enzyme activity, signal transduction, proliferation and apoptosis. The homeostasis of mitochondrial metal ions plays an important role in maintaining mitochondria and cell functions and regulating multiple diseases. In particular, channels and transporters for transporting mitochondrial metal ions are very critical, which can be used as potential targets to treat neurodegeneration, cardiovascular diseases, cancer, diabetes and other metabolic diseases. This review summarizes the current research on several types of mitochondrial metal ion channels/transporters and their functions in cell metabolism and diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.  相似文献   
9.
10.
    
Buffalo milk proteins (casein, co-precipitate or whey protein concentrate) were phosphorylated with phosphorus oxychloride (POCl3) at three different pH values (5.0, 7.0 and 9.0). The solubilities of phosphorylated milk proteins were examined over the pH range 3.0–9.0 in water and ionic (0.1 m NaCl or 10–70 mm Ca2+) systems. The solubilities of buffalo milk proteins decreased at pH 3.0, while there was an increase in the solubilities of casein and co-precipitate near their isoelectric points upon phosphorylation. Solubilities of these phosphorylated milk proteins were pH dependent in 0.1 m NaCl but there was a decrease in their solubilities with increase in calcium ion concentration. This alteration could be due to the shifting of isoionic points of phosphorylated buffalo milk proteins towards acidic pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号