首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18808篇
  免费   1880篇
  国内免费   828篇
电工技术   3401篇
综合类   1567篇
化学工业   2119篇
金属工艺   1136篇
机械仪表   1244篇
建筑科学   1840篇
矿业工程   613篇
能源动力   487篇
轻工业   1563篇
水利工程   235篇
石油天然气   415篇
武器工业   196篇
无线电   2203篇
一般工业技术   2144篇
冶金工业   781篇
原子能技术   133篇
自动化技术   1439篇
  2024年   53篇
  2023年   278篇
  2022年   437篇
  2021年   609篇
  2020年   629篇
  2019年   497篇
  2018年   462篇
  2017年   633篇
  2016年   653篇
  2015年   767篇
  2014年   1440篇
  2013年   1169篇
  2012年   1531篇
  2011年   1491篇
  2010年   1079篇
  2009年   1113篇
  2008年   958篇
  2007年   1303篇
  2006年   1125篇
  2005年   908篇
  2004年   728篇
  2003年   640篇
  2002年   563篇
  2001年   494篇
  2000年   380篇
  1999年   289篇
  1998年   214篇
  1997年   153篇
  1996年   133篇
  1995年   119篇
  1994年   112篇
  1993年   70篇
  1992年   65篇
  1991年   56篇
  1990年   94篇
  1989年   54篇
  1988年   25篇
  1987年   30篇
  1986年   23篇
  1985年   22篇
  1984年   19篇
  1983年   9篇
  1982年   15篇
  1981年   7篇
  1980年   13篇
  1979年   6篇
  1978年   7篇
  1975年   5篇
  1974年   6篇
  1964年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this study, the effects of cell temperature and relative humidity on charge transport parameters are numerically analyzed. In order to perform this analysis, three-dimensional and anisotropic numerical models are developed. The numerical models are integrated into the experimental values for anisotropic electrical conductivities, as depending on cell temperature and relative humidity, that were obtained from our previous study. The achieved results indicate that the values of current densities in the in-plane direction increase with increasing cell temperature and relative humidity, while the current densities reach a maximum in the rib regions for both the numerical model at the through-plane direction. The behaviors of electrolyte potentials are similar with changes in the cell temperature and relative humidity. In addition, the cathode electrical potentials in both the in-plane direction and through-plane direction do not change to a considerable amount with increasing cell temperature and relative humidity.  相似文献   
2.
3.
In the context of the high-level radioactive waste disposal CIGEO, the corrosion rate due to microbially influenced corrosion (MIC) has to be evaluated. In France, it is envisaged to dispose of high- and intermediate-level long-lived radioactive waste at a depth of 500 m in a deep geological disposal, drilled in the Callovo-Oxfordian claystone (Cox) formation. To do so, a carbon steel casing will be inserted inside disposal cells, which are horizontal tunnels drilled in the Cox. A specific cement grout will be injected between the carbon steel casing and the claystone. A study was conducted to evaluate the possibility of MIC on carbon steel in the foreseeable high radioactive waste disposal. The corrosiveness of various environments was investigated at 50°C and 80°C with or without microorganisms enriched from samples of Andra's underground research laboratory. The monitoring of corrosion during the experiments was ensured using gravimetric method and real-time corrosion monitoring using sensors based on the measurements of the electrical resistance. The corrosion data were completed with microbiological analyses including cultural and molecular characterizations.  相似文献   
4.
Ferrites are materials of interest due to their broad applications in high technological devices and a lot of research has been focused to synthesize new ferrites. In this regard, an effort has been devoted to synthesize spinel Pr–Ni co-substituted strontium ferrites with a nominal formula of Sr1-xPrxFe2-yNiyO4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0). The cubic structure of pure and Pr–Ni co-substituted strontium ferrite samples calcinated at 1073 K for 3 h has been confirmed through X-ray diffraction (XRD). Average sizes of crystallites (18–25 nm) have been estimated from XRD analysis and nanometer particle sizes of synthesized ferrites have been further verified by scanning electron microscopy (SEM). SEM results have also shown that particles are mostly agglomerated and all the samples possess porosity. It has been observed that at 298 K, the values of resistivity (ρ) increase, while that of AC conductivity, dielectric loss, and dielectric constants decrease with increasing amounts of Pr3+ and Ni2+ ions. The values of dielectric parameters initially decrease with frequency and later become constant and can be explained on the basis of dielectric polarization. Electrochemical impedance spectroscopy (EIS) studies show that the charge transport phenomenon in ferrite materials is mainly controlled via grain boundaries. Overall, synthesized ferrite materials own enhanced resistivity values in the range of 1.38 × 109–1.94 × 109 Ω cm and minimum dielectric losses, which makes them suitable candidates for high frequency devices applications.  相似文献   
5.
6.
7.
Despite recent rapid advances in metal halide perovskites for use in optoelectronics, the fundamental understanding of the electrical-poling-induced ion migration, accounting for many unusual attributes and thus performance in perovskite-based devices, remain comparatively elusive. Herein, the electrical-poling-promoted polarization potential is reported for rendering hybrid organic–inorganic perovskite photodetectors with high photocurrent and fast response time, displaying a tenfold enhancement in the photocurrent and a twofold decrease in the response time after an external electric field poling. First, a robust meniscus-assisted solution-printing strategy is employed to facilitate the oriented perovskite crystals over a large area. Subsequently, the electrical poling invokes the ion migration within perovskite crystals, thus inducing a polarization potential, as substantiated by the surface potential change assessed by Kelvin probe force microscopy. Such electrical-poling-induced polarization potential is responsible for the markedly enhanced photocurrent and largely shortened response time. This work presents new insights into the electrical-poling-triggered ion migration and, in turn, polarization potential as well as into the implication of the latter for optoelectronic devices with greater performance. As such, the utilization of ion-migration-produced polarization potential may represent an important endeavor toward a wide range of high-performance perovskite-based photodetectors, solar cells, transistors, scintillators, etc.  相似文献   
8.
Cable‐shaped supercapacitors (SCs) have recently aroused significant attention due to their attractive properties such as small size, lightweight, and bendability. Current cable‐shaped SCs have symmetric device configuration. However, if an asymmetric design is used in cable‐shaped supercapacitors, they would become more attractive due to broader cell operation voltages, which results in higher energy densities. Here, a novel coil‐type asymmetric supercapacitor electrical cable (CASEC) is reported with enhanced cell operation voltage and extraordinary mechanical‐electrochemical stability. The CASECs show excellent charge–discharge profiles, extraordinary rate capability (95.4%), high energy density (0.85 mWh cm−3), remarkable flexibility and bendability, and superior bending cycle stability (≈93.0% after 4000 cycles at different bending states). In addition, the CASECs not only exhibit the capability to store energy but also to transmit electricity simultaneously and independently. The integrated electrical conduction and storage capability of CASECS offer many potential applications in solar energy storage and electronic gadgets.  相似文献   
9.
As a solid state joining process, ultrasonic spot welding has been proven to be a promising technique for joining copper alloys. However, challenges still remain in employing ultrasonic spot welding to join copper alloys. This article comprehensively reviews the current state of ultrasonic spot welding of copper alloys with a number of critical issues including materials flow, plastic deformation, temperature distribution, vibration, relative motion, vertical displacement, interface friction coefficient, online monitoring technique, coupled with the macrostructure and microstructure, the mechanical properties and electrical conductivity. In addition, the future trends in this field are provided.  相似文献   
10.
Fault detection and isolation in water distribution networks is an active topic due to the nonlinearities of flow propagation and recent increases in data availability due to sensor deployment. Here, we propose an efficient two-step data driven alternative: first, we perform sensor placement taking the network topology into account; second, we use incoming sensor data to build a network model through online dictionary learning. Online learning is fast and allows tackling large networks as it processes small batches of signals at a time. This brings the benefit of continuous integration of new data into the existing network model, either in the beginning for training or in production when new data samples are gathered. The proposed algorithms show good performance in our simulations on both small and large-scale networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号