首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52489篇
  免费   6141篇
  国内免费   3556篇
电工技术   1987篇
技术理论   1篇
综合类   2819篇
化学工业   10901篇
金属工艺   5701篇
机械仪表   1934篇
建筑科学   2855篇
矿业工程   1039篇
能源动力   2002篇
轻工业   1825篇
水利工程   353篇
石油天然气   612篇
武器工业   610篇
无线电   5934篇
一般工业技术   16045篇
冶金工业   2994篇
原子能技术   445篇
自动化技术   4129篇
  2024年   223篇
  2023年   1137篇
  2022年   1243篇
  2021年   1784篇
  2020年   2140篇
  2019年   2014篇
  2018年   1840篇
  2017年   2070篇
  2016年   2093篇
  2015年   2136篇
  2014年   2898篇
  2013年   3100篇
  2012年   3334篇
  2011年   4112篇
  2010年   2964篇
  2009年   3235篇
  2008年   2935篇
  2007年   3458篇
  2006年   3049篇
  2005年   2822篇
  2004年   2256篇
  2003年   2126篇
  2002年   1866篇
  2001年   1562篇
  2000年   1288篇
  1999年   922篇
  1998年   761篇
  1997年   583篇
  1996年   437篇
  1995年   339篇
  1994年   326篇
  1993年   215篇
  1992年   186篇
  1991年   156篇
  1990年   147篇
  1989年   119篇
  1988年   66篇
  1987年   37篇
  1986年   32篇
  1985年   28篇
  1984年   40篇
  1983年   23篇
  1982年   29篇
  1981年   9篇
  1980年   11篇
  1976年   3篇
  1975年   5篇
  1974年   3篇
  1955年   4篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 8 毫秒
1.
Various methods have been developed to monitor the health and strain state of carbon fiber reinforced polymers, each with a unique set of pros and cons. This research assesses the use of piezoresistive sensors for in situ strain measurement of carbon fiber and other composite structures in multidirectional laminates. The piezoresistive sensor material and the embedded circuitry are both evaluated. For the piezoresistive sensor, a conductive nickel nanocomposite sensor is compared with the piezoresistivity of the carbon fiber itself. For the circuit, the use of carbon fibers already present in the structure is compared with the use of nickel coated carbon fiber. Successful localized strain sensing is demonstrated for several sensor and circuitry configurations. Numerous engineering applications are possible in the ever-growing field of carbon-composites.  相似文献   
2.
This paper presents an effective approach to achieve efficient electrical actuation and monitoring of shape recovery based on patterned Au electrodes on shape memory polymer (SMP). The electrically responsive shape recovery behavior was characterized and monitored by the evolution change in electrical resistance of patterned Au electrode. Both electrical actuation and temperature distribution in the SMP have been improved by optimizing the Au electrode patterns. The electrically actuated shape recovery behavior and temperature evolution during the actuation were monitored and characterized. The resistance changes could be used to detect beginning/finishing points of the shape recovery. Therefore, the Au electrode not only significantly enhances the electrical actuation performance to achieve a fast electrical actuation, but also enables the resistance signal to detect the free recovery process.  相似文献   
3.
Inspired by biological systems in which damage triggers an autonomic healing response, a polymer composite material that can heal itself when cracked has been developed. In this work, compression and tensile properties of a self-healed fibre reinforced epoxy composites were investigated. Microencapsulated epoxy and mercaptan healing agents were incorporated into a glass fibre reinforced epoxy matrix to produce a polymer composite capable of self-healing. The self-repair microcapsules in the epoxy resin would break as a result of microcrack expansion in the matrix, and letting out the strong repair agent to recover the mechanical strength with a relative healing efficiency of up to 140% which is a ratio of healed property value to initial property value or healing efficiency up to 119% if using the healed strength with the damaged strength.  相似文献   
4.
通过制备不同晶相结构〔单斜相(m-ZrO_2)、四方相(t-ZrO_2)和无定型(a-ZrO_2)〕ZrO_2载体,再通过沉积沉淀法制得Cu/m-ZrO_2、Cu/t-ZrO_2和Cu/a-ZrO_2催化剂,分别用于催化二乙醇胺脱氢合成亚氨基二乙酸反应。采用XRD、氮气物理吸附脱附、XPS、H_2-TPR、CO_2-TPD对催化剂的结构进行了表征。结果表明,Cu/m-ZrO_2催化剂界面更加有利于Cu~+/Cu~0稳定存在,具有更多的碱性位点,且抗氧化性较好。在二乙醇胺脱氢反应中,Cu/m-ZrO_2催化剂性能最好,反应时间为2.5 h,亚氨基二乙酸收率为97.64%。  相似文献   
5.
Upconversion phosphors are known as a material system that can convert near-infrared light into visible/ultraviolet emissions by sequentially absorbing multiple photons. The studies on upconversion materials often use two rare earth (RE) ions as a sensitizer-activator pair. We investigated the influences on luminescence intensity depending on Cr-doping content (x) of hexagonal NaLu0.98–xCrxF4Er0.02 (x = 0–0.9) upconversion material by substituting Lu3+ ions with Cr3+in the absence of Gd3+. The change in upconversion luminescence intensity appears with saddle-like shape. We suggest that Cr3+ ions play the dual role as a constituent in host lattice and a sensitizer in the upconversion process. Optimal conditions for gaining the strongest upconversion emission correspond to x = 0.3–0.5, where there are effective energy transfers between Cr3+ and Er3+ ions and CrEr dimers. Apart from these values, the emission intensity decreases rapidly which can be ascribed to the absence of multiple-photon absorption for the case of low Cr3+ contents, and to the coupling between Cr3+ and/or Er3+ ions for the case of high Cr3+ contents. Magnetization and electron-spin-resonant measurements were performed to understand the correlation between the optical and magnetic properties.  相似文献   
6.
This paper presents an overview and examples of material design and development using (1) classical thermodynamics; (2) CALPHAD (calculation of phase diagrams) modeling; and (3) Integrated Computational Materials Engineering (ICME) approaches. Although the examples are given in lightweight aluminum and magnesium alloys for structural applications, the fundamental methodology and modeling principles are applicable to all materials and engineering applications. The examples in this paper have demonstrated the effectiveness and limitations of classical thermodynamics in solving specific problems (such as nucleation during solidification and solid-state precipitation in aluminum alloys). Computational thermodynamics and CALPHAD modeling, when combined with critical experimental validation, have been used to guide the selection and design of new magnesium alloys for elevated-temperature applications. The future of material design and development will be based on a holistic ICME approach. However, key challenges exist in many aspects of ICME framework, such as the lack of diffusion/mobility databases for many materials systems, limitation of current microstructural modeling capability and integration tools for simulation codes of different length scales.  相似文献   
7.
Multi-projector displays allow the realization of large and immersive projection environments by allowing the tiling of projections from multiple projectors. Such tiled displays require real time geometrical warping of the content that is being projected from each projector. This geometrical warping is a computationally intensive operation and is typically applied using high-end graphics processing units (GPUs) that are able to process a defined number of projector channels. Furthermore, this limits the applicability of such multi-projector display systems only to the content that is being generated using desktop based systems. In this paper we propose a platform independent FPGA based scalable hardware architecture for geometric correction of projected content that allows addition of each projector channel at a fractional increase in logic area. The proposed scheme provides real time correction of HD quality video streams and thus enables the use of this technology for embedded and standalone devices.  相似文献   
8.
Fine-grained fully-lamellar (FL) microstructure is desired for TiAl components to serve as compressor/turbine blades and turbocharger turbine wheels. This study deals with the process and phase transformation to produce FL microstructure for Mo stabilized beta-gamma TiAl alloys without single α-phase field. Unlike the α + γ two-phased TiAl or beta-gamma TiAl with single α-phase field, the wrought multi-phase TiAl–4/6Nb–2Mo–B/Y alloys exhibit special annealing process to obtain FL microstructure. Short-term annealing at temperatures slightly above β-transus is recommended to produce the desired FL microstructure. The related mechanism is to guarantee the sufficient diffusion homogenization of β stabilizers during single β-phase annealing, and further avoid α decomposition by α → γ + β when cooling through α + β + γ phase field. The colony boundary β phase contributes to fine-grained nearly FL microstructure, by retarding the coarsening of the α phase grains.  相似文献   
9.
Measuring nonlinear optical response of a specific material in a mixture, not only leads to investigate the behavior of a particular component in various circumstances, but also can be a way to select suitable combination and optimum concentration of additives and therefore obtaining the maximum nonlinear optical signals. In this work, by using dual-arm Z-scan technique, the nonlinear refractive index of Disperse Red1 (DR1) organic dye molecules inside the core of prepared polymeric nanocapsules was measured among various materials which prepared nanocapsules were made of them. Then the measured value was compared with nonlinear refractive index of DR1 solved in dichloromethane.  相似文献   
10.
To improve the electrochemical properties of rare-earth–Mg–Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the ...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号