首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18667篇
  免费   2661篇
  国内免费   2198篇
电工技术   1803篇
综合类   2950篇
化学工业   905篇
金属工艺   283篇
机械仪表   1334篇
建筑科学   1844篇
矿业工程   202篇
能源动力   413篇
轻工业   170篇
水利工程   443篇
石油天然气   283篇
武器工业   231篇
无线电   2567篇
一般工业技术   2562篇
冶金工业   110篇
原子能技术   114篇
自动化技术   7312篇
  2024年   76篇
  2023年   268篇
  2022年   330篇
  2021年   397篇
  2020年   640篇
  2019年   602篇
  2018年   585篇
  2017年   762篇
  2016年   858篇
  2015年   761篇
  2014年   986篇
  2013年   1477篇
  2012年   1386篇
  2011年   1358篇
  2010年   1032篇
  2009年   1141篇
  2008年   1173篇
  2007年   1355篇
  2006年   1131篇
  2005年   1055篇
  2004年   855篇
  2003年   764篇
  2002年   622篇
  2001年   626篇
  2000年   596篇
  1999年   448篇
  1998年   369篇
  1997年   388篇
  1996年   283篇
  1995年   247篇
  1994年   205篇
  1993年   151篇
  1992年   140篇
  1991年   106篇
  1990年   79篇
  1989年   61篇
  1988年   38篇
  1987年   16篇
  1986年   22篇
  1985年   13篇
  1984年   24篇
  1983年   8篇
  1982年   19篇
  1981年   12篇
  1980年   18篇
  1979年   15篇
  1978年   12篇
  1977年   11篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
1.
This paper investigates PID control design for a class of planar nonlinear uncertain systems in the presence of actuator saturation. Based on the bounds on the growth rates of the nonlinear uncertain function in the system model, the system is placed in a linear differential inclusion. Each vertex system of the linear differential inclusion is a linear system subject to actuator saturation. By placing the saturated PID control into a convex hull formed by the PID controller and an auxiliary linear feedback law, we establish conditions under which an ellipsoid is contractively invariant and hence is an estimate of the domain of attraction of the equilibrium point of the closed-loop system. The equilibrium point corresponds to the desired set point for the system output. Thus, the location of the equilibrium point and the size of the domain of attraction determine, respectively, the set point that the output can achieve and the range of initial conditions from which this set point can be reached. Based on these conditions, the feasible set points can be determined and the design of the PID control law that stabilizes the nonlinear uncertain system at a feasible set point with a large domain of attraction can then be formulated and solved as a constrained optimization problem with constraints in the form of linear matrix inequalities (LMIs). Application of the proposed design to a magnetic suspension system illustrates the design process and the performance of the resulting PID control law.   相似文献   
2.
3.
The controller design for the robotic manipulator faces different challenges such as the system's nonlinearities and the uncertainties of the parameters. Furthermore, the tracking of different linear and nonlinear trajectories represents a vital role by the manipulator. This paper suggests an optimal design for the nonlinear model predictive control (NLMPC) based on a new improved intelligent technique and it is named modified multitracker optimization algorithm (MMTOA). The proposed modification of the MTOA is carried out based on opposition-based learning (OBL) and quasi OBL approaches. This modification improves the exploration behavior of the MTOA to prevent it from becoming trapped in a local optimum. The proposed method is applied on the robotic manipulator to track different linear and nonlinear trajectories. The NLMPC parameters are tuned by the MMTOA rather than the trial and error method of the designer. The proposed NLMPC based on MMTOA is compared with the original MTOA, genetic algorithm, and cuckoo search algorithm in literature. The superiority and effectiveness of the proposed controller are confirmed to track different linear and nonlinear trajectories. Furthermore, the robustness of the proposed method is emphasized against the uncertainties of the parameters.  相似文献   
4.
The present paper proposes a new method for axis identification in discrete axially symmetrical geometric models. This method is based on-a-never-used-before property of the axially symmetrical surfaces for which the symmetry line of any section curve of the surface (or of a portion of it in the case of an incomplete axially symmetrical surface) always intersects the axis of symmetry of the surface. Thus the working principle of the method makes it very robust to local defectiveness, measurement noise and outliers.In order to compare it with the most cited methods presented in literature, several types of tests have been designed and performed. The robustness of those methods, on the one hand, has been evaluated by defining the Statistical Confidence Boundary at 1σ confidence level. The trueness of the method, on the other hand, has been evaluated on geometric models obtained by measuring real objects. The high robustness, which characterizes the proposed method, makes it particularly suitable for product geometric inspection where high accuracy is required.  相似文献   
5.
ABSTRACT

This paper deals with asymptotic stabilisation of a class of nonlinear input-delayed systems via dynamic output feedback in the presence of disturbances. The proposed strategy has the structure of an observer-based control law, in which the observer estimates and predicts both the plant state and the external disturbance. A nominal delay value is assumed to be known and stability conditions in terms of linear matrix inequalities are derived for fast-varying delay uncertainties. Asymptotic stability is achieved if the disturbance or the time delay is constant. The controller design problem is also addressed and a numerical example with an unstable system is provided to illustrate the usefulness of the proposed strategy.  相似文献   
6.
In this paper, the dynamic behaviors on the basis of simulation for high-purity heat integrated air separation column (HIASC) are studied. A nonlinear generic model control (GMC) scheme is proposed based on the nonlinear behavior analyses of a HIASC process, and an adaptive generic model control (AGMC) scheme is further presented to correct the model parameters online. Related internal model control (IMC) scheme and multi-loop PID (M-PID) scheme are also developed as the comparative base. The comparative researches are carried out among these linear and nonlinear control schemes in detail. The simulation research results show that the proposed AGMC schemes present advantages in both servo control and regulatory control for the high-purity HIASC.  相似文献   
7.
This paper presents robust and adaptive boundary control designs to stabilize the two‐dimensional vibration of hybrid shaft model. The hybrid shaft is mathematically represented by a set of partial differential equations, governing the shaft vibrations, coupled to ordinary differential equations, describing rigid body spinning and dynamic boundary conditions. The control objective is to stabilize the transverse vibrations of the perturbed shaft while regulating the spinning rate. To achieve this, the paper first establishes robust boundary control laws that fulfil the control objective in the presence of modeling uncertainties and external disturbances operating over the shaft domain and boundary. Lyapunov‐based analyses show that the proposed robust control exponentially stabilizes the shaft with vanishing distributive perturbations, while assuring ultimately bounded vibrations in the case of nonvanishing perturbations. Then, adaptive control philosophy is utilized to achieve redesigned robust controllers that only use online adaptation of control gains without acquiring the knowledge of bounds on perturbations, as well as dynamic parameters. An advantage of this design is avoiding an overconservative robust control law, which may induce poor stability and chattering in tackling system perturbations with unknown upper bounds. Simulations through finite element method illustrate the results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
8.
Heat exchanger network synthesis (HENS) has progressed by using mathematical programming-based simultaneous methodology. Although various considerations such as non-isothermal mixing and bypass streams are applied to consider real world alternatives in modeling phase, many challenges are faced because of its properties within non-convex mixed-integer nonlinear programming (MINLP). We propose a modified superstructure, which contains a utility substage for use in considering multiple utilities in a simultaneous MINLP model. To improve model size and convergence, fixed utility locations according to temperature and series connections between utilities are suggested. The numbers of constraints, discrete, and continuous variables show that overall model size decreases compared with previous research. Thus, it is possible to expand the feasible search area for reaching the nearest global solution. The model's effectiveness and applications are exemplified by several literature problems, where it is used to deduce a network superior to that of any other reported methodology.  相似文献   
9.
We explore a truncation error criterion to steer adaptive step length refinement and coarsening in incremental-iterative path following procedures, applied to problems in large-deformation structural mechanics. Elaborating on ideas proposed by Bergan and collaborators in the 1970s, we first describe an easily computable scalar stiffness parameter whose sign and rate of change provide reliable information on the local behavior and complexity of the equilibrium path. We then derive a simple scaling law that adaptively adjusts the length of the next step based on the rate of change of the stiffness parameter at previous points on the path. We show that this scaling is equivalent to keeping a local truncation error constant in each step. We demonstrate with numerical examples that our adaptive method follows a path with a significantly reduced number of points compared to an analysis with uniform step length of the same fidelity level. A comparison with Abaqus illustrates that the truncation error criterion effectively concentrates points around the smallest-scale features of the path, which is generally not possible with automatic incrementation solely based on local convergence properties.  相似文献   
10.
Abstract

Model order reduction is a common practice to reduce large order systems so that their simulation and control become easy. Nonlinearity aware trajectory piecewise linear is a variation of trajectory piecewise linearization technique of order reduction that is used to reduce nonlinear systems. With this scheme, the reduced approximation of the system is generated by weighted sum of the linearized and reduced sub-models obtained at certain linearization points on the system trajectory. This scheme uses dynamically inspired weight assignment that makes the approximation nonlinearity aware. Just as weight assignment, the process of linearization points selection is also important for generating faithful approximations. This article uses a global maximum error controller based linearization points selection scheme according to which a state is chosen as a linearization point if the error between a current reduced model and the full order nonlinear system reaches a maximum value. A combination that not only selects linearization points based on an error controller but also assigns dynamic inspired weights is shown in this article. The proposed scheme generates approximations with higher accuracies. This is demonstrated by applying the proposed method to some benchmark nonlinear circuits including RC ladder network and inverter chain circuit and comparing the results with the conventional schemes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号