首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   13篇
综合类   16篇
化学工业   34篇
建筑科学   5篇
能源动力   30篇
轻工业   7篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   7篇
  2018年   3篇
  2017年   7篇
  2016年   5篇
  2015年   7篇
  2014年   6篇
  2013年   3篇
  2012年   5篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   6篇
  2006年   6篇
  2005年   5篇
  2004年   8篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
1.
Hydrogen is a clean energy carrier with great potential to be an alternative fuel. Anaerobic hydrogen fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste and wastewater enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be a source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate‐rich nitrogen‐deficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen, is possibly the most efficient way to use these agroindustrial residues. This review summarizes the potential of starch agroindustrial residues as a substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio‐processing conditions for biohydrogen production will be discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
2.
以高效产氢细菌哈尔滨产乙醇杆菌的模式菌株YUAN-3作为出发菌株,提取细菌总DNA,经过Sau3AI的不完全酶切,将2.5~5.0kb的片段连接入用BamHI酶切的pUC19质粒,转化入E.ColiDH5α中,构建菌株YUAN-3的基因组文库,得到克隆数接近9×103个,以最相近的梭菌属已报道的基因组平均大小4.6Mb计算,概括了其99%以上的基因组,达到了建库的理论值.随机挑取200个白色菌落进行测序,经分析得到的结果大多数与已经过全序列分析的产氢细菌的假想蛋白相近,其中有49个与其他菌株功能蛋白相似性超过70%的片段,包括叶酰聚谷氨酸合成酶、DNA拓扑异构酶、乙酰转移酶等,同时获得了7个功能蛋白或基因的完整开放阅读框.  相似文献   
3.
4.
5.
Thirty-nine purple non-sulfur bacteria (PNSB) were isolated from 162 environmental samples. These isolates of PNSB were tested for their ability to produce biohydrogen (Bio-H2) at 40 °C and only 14 isolates were noted to possess such ability, which were considered as thermotolerant photosynthetic Bio-H2 producing bacteria (tt-PHPB). Of 14 isolates of tt-PHPB, KKU-SN1/1 was observed to have the highest Bio-H2 productivity. Central composite design was employed to optimize the operating conditions for maximal Bio-H2 production by the strain KKU-SN1/1. Under optimal conditions (7.6 g/L malic acid, 11 g/L glutamic acid, pH 6.7, at 40 °C) the Bio-H2 production was increased by 68.28%. The purity of Bio-H2 produced was 92.22%, as suggested by gas chromatography (GC-TCD). Based on morphological characteristics and 16S rDNA sequence analysis, the strain KKU-SN1/1 was identified as Rhodopseudomonas pentothenatexigens, with 99.7% similarity. To our knowledge, this is the first report on Bio-H2 production by R. pentothenatexigens KKU-SN1/1.  相似文献   
6.
Energy sources are extremely important for theworld to survive, develop and prosper. At present, fos-sil fuels are the major global energy resource but theycause environmental problems during combustion, suchas global warming and acid rain, which have started toaffect the earth’s climate, weather condition, vegeta-tion and aquatic ecosystems, as well as creating serioushealth issues[1 -3]. Considering the energy security andthe global environment, there is a pressing need to ex-ploit new non-…  相似文献   
7.
活性污泥的连续流发酵产氢实验研究   总被引:2,自引:0,他引:2  
采用好氧活性污泥为种泥,以连续流搅拌槽式反应器(CSTR)作为发酵生物制氢反应装置,对发酵法生物制氢系统的启动和运行进行了实验研究。反应器有效容积为10L,接种污泥取自哈尔滨啤酒厂有机废水好氧生物处理系统的二沉池。反应器在污泥接种量为6.09 g·L~(-1),进水有机物浓度2000 mg COD·L~(-1),pH 5~7,HRT 8 h和(35±1)℃的条件下启动,运行27 d后达到稳定的乙醇型发酵状态,最高产气速率和产氢速率分别达到10.1 L·d~(-1)和5.8 L·d~(-1)。在进水有机物浓度提高到4000 mg COD·L~(-1),其他控制条件不变的情况下,系统可在3 d内重新达到新的平衡,最高产气速率和产氢速率分别达到20.7 L·d~(-1)和10.8 L·d~(-1),而氢气含量和发酵类型未发生改变。  相似文献   
8.
分析了以植物为基础的生物燃料的来源,指出了藻类是生物燃料的最有效来源;重点介绍了藻类生物燃料的巨大潜力,如用于生产生物乙醇、生物柴油、生物制氢争沼气等;并讨论了藻类生物燃料的经济可行性和未来的应用前景.  相似文献   
9.
There are many factors affecting the dark fermentative hydrogen production. The interaction of these factors, that is, their combined effects, should be investigated for better design of the systems with stable and higher hydrogen yields. This study aimed to investigate the combined effects of initial substrate, pH, and biomass (or initial substrate to biomass) values on hydrogen production from sucrose and sugar‐beet molasses. Therefore, optimum initial chemical oxygen demand (COD), pH, and volatile suspended solids (VSS) or initial substrate to biomass (VSS) ratio (S/Xo) values leading to the highest dark fermentative hydrogen production were investigated in batch reactors. An experimental design approach (response surface methodology) was used. Results revealed that when sucrose was the substrate, maximum hydrogen production yield (HY) of 2.3 mol H2/mol sucroseadded was obtained at initial pH of 7 and COD of 10 g/L. Initial S/Xo values studied (4–20 g COD/g VSS) had no effect on HY, while the initial pH was found as the parameter mostly affecting both HY and hydrogen production rate (HPR). When substrate was molasses, initial COD concentration was the only variable affecting HY and HPR. Maximum of both was achieved at 10 g/L initial COD. Initial VSS values studied (2.5–7.5 g/L) had no effect on HPR and HY. This study also indicated that molasses leads to homoacetogenesis for potentially containing intrinsic microorganism and/or natural constituents; thus, sucrose is more advantageous for hydrogen production via fermentation. Homoacetogenesis should be prevented for effective optimization via response surface methodology, if substrate is a natural carbon source potential to have intrinsic microorganisms. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
10.
Energy production from a coblended mixture of biosolids and food waste was optimised for hydrogen and methane production. Four different blends were prepared by varying the carbohydrate : protein (carb : pro) ratios. The biosolids contained a low carbohydrate fraction and so was not suitable for hydrogen production when used alone. However coblending this waste with a carbohydrate‐enriched food waste produced a greater hydrogen yield, making this option viable. Batch studies showed that the optimised mix had a biosolids concentration of 25.7% (w/w). The largest hydrogen yield of 198.5 mL/gVSremoved was observed when the carb : pro was 2.78, and this was threefold higher than the other carb : pro ratios evaluated in this study. The digestate recovered after hydrogen recovery had a C : N of 17.5, which is in the ideal range for methane production. The biochemical methane potential test showed a methane yield of 239 mL/gVSremoved, and the total volatile solids destruction following two‐phase hydrogen and methane production was 93%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号