首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
综合类   1篇
化学工业   3篇
无线电   4篇
  2023年   2篇
  2021年   3篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
Hydrogels are recognized as one of the most promising materials for e-skin devices because of their unique applicable functionalities such as flexibility, stretchability, biocompatibility, and conductivity. Beyond the excellent sensing functionalities, the e-skin devices further need to secure a target-oriented 3D structure to be applied onto various body parts having complex 3D shapes. However, most e-skin devices are still fabricated in simple 2D film-type devices, and it is an intriguing issue to fabricate complex 3D e-skin devices resembling target body parts via 3D printing. Here, a material design guideline is provided to prepare multifunctional hydrogels and their target-oriented 3D structures based on extrusion-based 3D printing. The material design parameters to realize target-oriented 3D structures via 3D printing are systematically derived from the correlation between material design of hydrogels and their gelation characteristics, rheological properties, and 3D printing processability for extrusion-based 3D printing. Based on the suggested material design window, ion conductive self-healable hydrogels are designed and successfully applied to extrusion-based 3D printing to realize various 3D shapes.  相似文献   
2.
3D printed graphene aerogels hold promise for flexible sensing fields due to their flexibility, low density, conductivity, and piezo-resistivity. However, low printing accuracy/fidelity and stochastic porous networks have hindered both sensing performance and device miniaturization. Here, printable graphene oxide (GO) inks are formulated through modulating oxygen functional groups, which allows printing of self-standing 3D graphene oxide aerogel microlattice (GOAL) with an ultra-high printing resolution of 70 µm. The reduced GOAL (RGOAL) is then stuck onto the adhesive tape as a facile and large-scale strategy to adapt their functionalities into target applications. Benefiting from the printing resolution of 70 µm, RGOAL tape shows better performance and data readability when used as micro sensors and robot e-skin. By adjusting the molecular structure of GO, the research realizes regulation of rheological properties of GO hydrogel and the 3D printing of lightweight and ultra-precision RGOAL, improves the sensing accuracy of graphene aerogel electronic devices and realizes the device miniaturization, expanding the application of graphene aerogel devices to a broader field such as micro robots, which is beyond the reach of previous reports.  相似文献   
3.
A virtual world has now become a reality as augmented reality (AR) and virtual reality (VR) technology become commercially available. Similar to how humans interact with the physical world, AR and VR systems rely on human–machine interface (HMI) sensors to interact with the virtual world. Currently, this is achieved via state of-the-art wearable visual and auditory tools that are rigid, bulky, and burdensome, thereby causing discomfort during practical application. To this end, a skin sensory interface has the potential to serve as the next-generation AR/VR technology because skin-like wearable sensors have advantages in that they can be ultrathin, ultra-soft, conformal, and imperceptible, which provides the ultimate comfort and immersive experience for users. In this progress report, nanowire-based soft wearable HMI sensors including acoustic, strain, pressure sensors, and physiological sensors are reviewed that may be adopted as skin sensory inputs in future AR/VR systems. Further, nanowire-based soft contact lenses, haptic force, and thermal and vibration actuators are covered as potential means of feedback for future AR/VR systems. Considering the possible effects of the virtual world on human health, skin-like wearable artery pulses, glucose, and lactate sensors are also described, which may enable imperceptible health monitoring during future AR/VR practices.  相似文献   
4.
《Ceramics International》2020,46(15):23592-23598
Due to the portability, good flexibility and excellent sensing performance, flexible piezoresistive sensors have received great attention in the field of transient electronic skin, intelligent robots and human-machine interaction. However, achieving both high sensitivity and wide sensing range by low-cost and large-scale method still remains a key challenge for developing high performance piezoresistive sensors. Here, a flexible and highly sensitive piezoresistive sensor was designed and realized by combining the 2D MXene material with wrinkle structure. The MXene composite based sensor with wrinkle structure was fabricated by spraying the active material onto the surface of a pre-stretched polyacrylate tape, which is facile, efficient and low-cost. The MXene composite based sensor demonstrates high sensitivity (148.26 kPa−1), wide pressure range (up to 16 kPa), short response time (120 ms) and excellent durability (>13000 cycles). Moreover, benefiting from the extraordinary sensing performance and flexibility, the sensor can detect human physiological signals, monitor intelligent robot postures and map spatial pressure distributions, thus exhibiting great potential in physiological analysis systems, humanoid robotics and biomedical prostheses.  相似文献   
5.
电子皮肤触觉传感器研究进展与发展趋势   总被引:4,自引:1,他引:4  
从介绍人类皮肤的触觉感知性能出发,全面综述了国际上多学科领域模拟人类皮肤的电子皮肤触觉传感器研究进展与关键技术;分析讨论了电子皮肤触觉传感器的工作原理、新型材料和结构、先进设计制作方法、触觉传感特性和性能指标等方面内容;重点总结了国内外近年来在电子皮肤阵列触觉传感器柔性化、弹性化、空间分辨率、灵敏度、快速响应、透明化、轻量化和多功能化等方面的研究进展.指出了电子皮肤触觉传感器的研究依然存在着难以兼顾高柔性和高弹性、高灵敏度电子皮肤设计制作工艺复杂,可扩展性差和成本高等技术难题.电子皮肤触觉传感器可广泛应用于机器人、医疗健康、航空航天、军事、智能制造和汽车安全等领域,正朝着高柔弹性、宽量程的高灵敏度、多功能、自愈合与自清洁、自供电与透明化等方向发展.  相似文献   
6.
This paper reports on a highly sensitive tactile sensor based on a floating gate organic transistor called Organic Charge Modulated FET coupled with a flexible piezoelectric polymer (namely a film of polyvinylene fluoride, PVDF). The proposed device is able to reliably transduce pressures as low as 300 Pa, thus opening up interesting perspectives for flexible and low-cost tactile sensors for e-skin applications.  相似文献   
7.
Hydrogels are promising materials in the applications of wound adhesives, wearable electronics, tissue engineering, implantable electronics, etc. The properties of a hydrogel rely strongly on its composition. However, the optimization of hydrogel properties has been a big challenge as increasing numbers of components are added to enhance and synergize its mechanical, biomedical, electrical, and self-healable properties. Here in this work, it is shown that high-throughput screening can efficiently and systematically explore the effects of multiple components (at least eight) on the properties of polysulfobetaine hydrogels, as well as provide a useful database for diverse applications. The optimized polysulfobetaine hydrogels that exhibit outstanding self-healing and mechanical properties, have been obtained by high-throughput screening. By compositing with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), intrinsically self-healable and stretchable conductors are achieved. It is further demonstrated that a polysulfobetaine hydrogel-based electronic skin, which exhibits exceptionally fast self-healing capability of the whole device at ambient conditions. This work successfully extends high-throughput synthetic methodology to the field of hydrogel electronics, as well as demonstrates new directions of healable flexible electronic devices in terms of material development and device design.  相似文献   
8.
《Ceramics International》2023,49(6):9307-9315
In this study, we fabricated mechanically deformable thermoelectric sponges comprising transition metal dichalcogenides (TMDs) and polyethyleneimine (PEI) through a layer-by-layer (LBL) self-assembly technique for a thermoelectric power supply for electronic skin. Chemically exfoliated molybdenum sulfide (MoS2) and niobium diselenide (NbSe2) were prepared as p- and n-type room-temperature thermoelectric materials, respectively, and deposited on a melamine sponge via electrostatic bonding with PEI to obtain stable mechanical stretchability and low thermal conductivity. Five bilayers of LBL self-assembled thermoelectric sponges exhibited an enhanced thermoelectric performance and figure of merit, which resulted from the improvement in the Seebeck coefficient compared with that of pristine chemically exfoliated TMDs owing to the energy filtering effect and the extremely low thermal conductivity owing to the phonon scattering effect at several created interfaces and the porous structure of the sponge. Additionally, the thermoelectric sponges showed mechanical stability during operation under stretching and compression and mechanical durability over 10,000 cycles under 30% tensile strain. Finally, based on the proposed thermoelectric sponge, a power patch that can be installed on the back of a hand to produce electrical energy in real time was successfully demonstrated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号