首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10702篇
  免费   1532篇
  国内免费   1172篇
电工技术   514篇
综合类   1113篇
化学工业   870篇
金属工艺   1138篇
机械仪表   515篇
建筑科学   545篇
矿业工程   282篇
能源动力   195篇
轻工业   155篇
水利工程   128篇
石油天然气   247篇
武器工业   95篇
无线电   2998篇
一般工业技术   1200篇
冶金工业   225篇
原子能技术   79篇
自动化技术   3107篇
  2024年   51篇
  2023年   232篇
  2022年   374篇
  2021年   423篇
  2020年   457篇
  2019年   449篇
  2018年   359篇
  2017年   430篇
  2016年   442篇
  2015年   540篇
  2014年   723篇
  2013年   728篇
  2012年   817篇
  2011年   845篇
  2010年   681篇
  2009年   706篇
  2008年   725篇
  2007年   706篇
  2006年   625篇
  2005年   528篇
  2004年   475篇
  2003年   382篇
  2002年   276篇
  2001年   248篇
  2000年   244篇
  1999年   184篇
  1998年   147篇
  1997年   133篇
  1996年   90篇
  1995年   99篇
  1994年   62篇
  1993年   39篇
  1992年   39篇
  1991年   30篇
  1990年   32篇
  1989年   19篇
  1988年   19篇
  1987年   8篇
  1986年   11篇
  1985年   6篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   3篇
  1974年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
High-temperature water electrolysis through solid oxide electrolysis cells (SOEC) will play a key role in building a hydrogen economy in the future. However, the delamination between the air electrode and the electrolyte remains a critical issue to be addressed. Previously, it was hypothesized that Co migration may improve the catalytic activity of the SrZrO3 second phase at the LSCF-YSZ interface, eventually leading to the delamination. In this work, the LSCF-YSZ interfaces sintered at different temperatures were examined in detail. The activation behaviors of the LSCF electrodes upon application with electrolysis current were characterized under different conditions. Further, samples containing purposely added SrZrO3 interlayer with and without cobalt were fabricated and compared. The activation process is less significant for the sample with cobalt-added SrZrO3 interlayer than the sample with pure SrZrO3 layer, supporting the hypothesis that Co migration may lead to the activation behavior.  相似文献   
2.
One of the most challenging issues in radio received signal strength (RSS)-based localization systems is the generation and distribution of a radio map with a coordinate system linked with spatial information in a large indoor space. This study proposes a novel spatial-tagged radio-mapping system (SRS) that effectively combines the heterogeneous properties of LiDAR and mobile phones to simultaneously perform both spatial and radio mappings. The SRS consists of synchronization, localization, and map building processes, and enables real-time spatial and radio mapping. In the synchronization process, the distance range, motion data, and radio signals obtained through the LiDAR and mobile phone are collected in nodal units according to the sensing time. In the localization process, a feature variance filter is used to control the number of features generated from LiDAR and estimate the positions at which the nodes are generated in real time according to the motion data and radio signals. In map building, the estimated positions of the nodes are used to extract spatial and radio maps by using a unified location coordinate system. To ensure mobility, the SRS is manufactured in the form of a backpack supporting LiDAR and a mobile phone; the usefulness of the system is experimentally verified. The experiments are performed in a large indoor shopping mall with a complex structure. The experimental results demonstrated that a common coordinate system could be used to build spatial and radio maps with high accuracy and efficiency in real time. In addition, the field applicability of the SRS to location-based services is experimentally verified by applying the constructed radio map to well-known fingerprinting algorithms using the heterogeneous mobile phones.  相似文献   
3.
Residential natural gas consumption depends on several factors. Available tools and methods to identify, categorize, and validate effective factors have some limitations, making consumption modeling more complex. Once a comprehensive model of effective consumption factors is developed for residential gas consumers, it can predict consumption. In addition, such a model could be used to verify the accuracy of measuring devices in order to reduce unaccounted for gas (UFG). The key factors affecting residential gas consumption were identified based on previous studies and their mutual effects were analyzed using a fuzzy cognitive mapping (FCM) method. The most significant factors and their effects on natural gas consumption in the residential sector were determined. In this study, for the first time, the expected consumption for each consumer was estimated using a consumption index. Generally, if the estimated consumption is significantly different from the amount recorded by the meter, it could suggest a potential source of UFG. The proposed method was applied to the data collected from the residential gas consumers of a small region in Iran (Dasht-e Arjan region, Fars province), and the results demonstrate the effectiveness of the proposed method.  相似文献   
4.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
5.
Despite recent rapid advances in metal halide perovskites for use in optoelectronics, the fundamental understanding of the electrical-poling-induced ion migration, accounting for many unusual attributes and thus performance in perovskite-based devices, remain comparatively elusive. Herein, the electrical-poling-promoted polarization potential is reported for rendering hybrid organic–inorganic perovskite photodetectors with high photocurrent and fast response time, displaying a tenfold enhancement in the photocurrent and a twofold decrease in the response time after an external electric field poling. First, a robust meniscus-assisted solution-printing strategy is employed to facilitate the oriented perovskite crystals over a large area. Subsequently, the electrical poling invokes the ion migration within perovskite crystals, thus inducing a polarization potential, as substantiated by the surface potential change assessed by Kelvin probe force microscopy. Such electrical-poling-induced polarization potential is responsible for the markedly enhanced photocurrent and largely shortened response time. This work presents new insights into the electrical-poling-triggered ion migration and, in turn, polarization potential as well as into the implication of the latter for optoelectronic devices with greater performance. As such, the utilization of ion-migration-produced polarization potential may represent an important endeavor toward a wide range of high-performance perovskite-based photodetectors, solar cells, transistors, scintillators, etc.  相似文献   
6.
为了成功预测竹林山煤矿综放高瓦斯矿井大采高工作面煤层瓦斯涌出量,以主采3号煤层为主要研究对象,针对3号煤层以往开采情况,通过布设测点测量其煤层瓦斯含量和了解相邻矿井瓦斯含量,采用分源预测法、回归法及统计法等预测方法得到了3号煤层瓦斯含量的分布规律,并绘制了3号煤层的瓦斯含量等值线图。对矿井不同生产时期的瓦斯含量进行预测,得到了生产前期、中期及后期采区的最大绝对瓦斯涌出量和最大相对瓦斯涌出量,说明了竹林山煤矿各个时期均属于高瓦斯矿井。  相似文献   
7.
The grouping of pixels based on some similarity criteria is called image segmentation. In this paper the problem of color image segmentation is considered as a clustering problem and a fixed length genetic algorithm (GA) is used to handle it. The effectiveness of GA depends on the objective function (fitness function) and the initialization of the population. A new objective function is proposed to evaluate the quality of the segmentation and the fitness of a chromosome. In fixed length genetic algorithm the chromosomes have same length, which is normally set by the user. Here, a self organizing map (SOM) is used to determine the number of segments in order to set the length of a chromosome automatically. An opposition based strategy is adopted for the initialization of the population in order to diversify the search process. In some cases the proposed method makes the small regions of an image as separate segments, which leads to noisy segmentation. A simple ad hoc mechanism is devised to refine the noisy segmentation. The qualitative and quantitative results show that the proposed method performs better than the state-of-the-art methods.  相似文献   
8.
为探究[Zr_(0.73)(Cu_(0.59)Ni_(0.41))_(0.27)]_(87)Al_(13)非晶合金的热塑性成形性能以及绘制其对应的热加工图谱,用Gleeble3500型热模拟压缩实验机对该非晶合金进行不同参数下的热模拟压缩实验。结果表明,合金在压缩过程中变形行为由牛顿流变演变为非牛顿流变;同时,过高或过低的热加工温度均能导致合金晶化;进一步对数据分析得到该合金在不同热塑性成形参数下的功率耗散图与流变失稳图,并绘制出相应的热加工谱图,谱图分析结果表明,该合金在温度为420与430℃、应变速率为10~(-3) s~(-1)时具有较高功率耗散系数且没有失稳区域,因此,合金可选的热塑性加工参数为温度420~430℃,应变速率10~(-3) s~(-1)。  相似文献   
9.
10.
《Ceramics International》2022,48(2):1889-1897
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) are considered to be one of the most promising materials in the electromagnetic (EM) stealth of aero-engines, which is expected to achieve strong absorption and broad-band performance. Multiscale structural design was applied to SiCf/Si3N4–SiOC composites by construction of micro/nanoscale heterogeneous interfaces and macro double-layer impedance matching structure. SiCf/Si3N4–SiOC composites were fabricated by using SiC fibers with different conductivities and SiOC–Si3N4 matrices with gradient impedance structures to improve impedance matching effectively. Owing to its unique structure, SiCf/Si3N4–SiOC composites (A3-composites) achieved excellent EM wave absorption performance with a minimum reflection coefficient (RCmin) of ?25.1 dB at 2.45 mm and an effective absorption bandwidth (EAB) of 4.0 GHz at 2.85 mm in X-band. Moreover, double-layer SiCf/Si3N4–SiOC with an improved impedance matching structure obtained an RCmin of ?56.9 dB and an EAB of 4.2 GHz at 3.00 mm, which means it can absorb more than 90% of the EM waves in the whole X-band. The RC is less than ?8 dB at 2.6–2.8 mm from RT to 600 °C in the whole X-band, displaying excellent high-temperature absorption performance. The results provide a new design opinion for broad-band EM absorbing SiCf-CMCs at high temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号