首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   2篇
  国内免费   1篇
电工技术   1篇
综合类   2篇
化学工业   2篇
金属工艺   17篇
机械仪表   27篇
建筑科学   2篇
无线电   10篇
一般工业技术   38篇
自动化技术   5篇
  2024年   2篇
  2020年   4篇
  2019年   9篇
  2018年   6篇
  2017年   10篇
  2016年   11篇
  2015年   7篇
  2014年   5篇
  2013年   7篇
  2012年   2篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   7篇
  2007年   6篇
  2006年   5篇
  2005年   5篇
  2004年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
1.
This study presents a spiral polishing method and a device for micro-finishing purposes. This novel finishing process has wider application than traditional processes. This offers both automation and flexibility in final machining operations for deburring, polishing, and removing recast layers, thereby producing compressive residual stresses even in difficult to reach areas. Applying of this method can obtain a fine polished surface by removing tiny fragments via a micro lapping generated by transmission of an abrasive medium through a screw rod. The effect of the removal of the tiny fragments can be achieved due to the function of micro lapping. The method is not dependent on the size of the work-piece's application area in order to carry out the ultra precise process. The application of this research can be extended to various products of precision ball-bearing lead screw. The proposed method produces products with greater precision and more efficiently than traditional processes, in terms of processing precisions and the surface quality of products. These parameters used in achieving maximum material removal rate (MRR) and the lowest surface roughness (SR) are abrasive particle size, abrasive concentration, gap, revolution speed and machining time.  相似文献   
2.
Alumina ceramic is well documented as a much-demanded advanced ceramic in the present competitive structure of manufacturing and industrial applications owing to its excellent and superior properties. The current article aimed to experimentally investigate the influence of several process variables, namely: spindle speed, feed rate, coolant pressure, and ultrasonic power, on considered machining characteristics of interest, i.e., chipping size and material removal rate in the rotary ultrasonic machining of alumina ceramic. Response surface methodology has been employed in the form of a central composite rotatable design to design the experiments. Variance analysis testing has also been performed with a view to observing the consequence of the considered parameters. The microstructure of machined rod samples was evaluated and analyzed using a scanning electron microscope. This analysis has revealed and confirmed the presence of plastic deformation that caused removal of material along with brittle fractures in rotary ultrasonic machining of alumina ceramic. The validity and competence of the developed mathematical model have been verified with test results. The multi-response optimization of machining responses (material removal rate and chipping size) has also been attempted by employing a desirability approach, and at an optimized parametric setting the obtained experimental values for material removal rate and chipping size were 0.4166?mm3/s and 0.5134?mm, respectively, with a combined desirability index value of 0.849.  相似文献   
3.
The present research is the first type of study in which the application of powder mixed electrical discharge machining (PMEDM) for the machining of β-phase titanium (β-Ti) alloy has been proposed. β-Ti alloys are new range of titanium alloys, which has a wide-spread application in dental, orthopedics, shape memory, and stents. The aim of the present study is to fabricate submicro- and nanoscale topography by PMEDM process to enhance the biocompatibility without affecting machining efficiency. The effect of Si powder concentration along with pulse current and duration on the surface and machining characteristics has been investigated. A significant decrease in surface crack density on the machined surface with 4 g/l Si powder concentration was observed. When β-Ti alloy was modified at 15 A pulse current, longer pulse interval with 8 g/l concentration of Si powder particles, the interconnected surface porosities with pore size 200–500 nm was observed. Moreover, at Si powder concentrations of 2 g/l and 4 g/l, the recast layer thickness is 8 µm and 2–3 µm, respectively. Elemental mapping analysis confirmed that PMEDM also generated carbides and oxides enriched surface, a favorable surface chemistry to enhance the biocompatibility of β-Ti alloy. Furthermore, PMEDM also enhances the machining performance by improving material removal rate and reducing tool wear rate.  相似文献   
4.
This article focuses on parametric optimization for photochemical machining (PCM) of brass and german silver. The aim of the study is to analyze the effect of control parameters on response measures, that is, surface roughness, material removal rate, and edge deviation and optimization of parameters considering different weight percentage for each performance measure. The control parameters have been selected as etchant concentration, etching temperature, and etching time. Using full factorial method of design of experiments, PCM has been carried out using ferric chloride as etchant. Surface roughness and edge deviation should be less, while material removal rate is desired high. For satisfying this multi-objective condition, overall evaluation criteria (OEC) have been formulated by assigning different and equal weight percentage to response measures. The optimized condition for particular OEC is obtained, and analysis of variance (ANOVA) has been performed for observing effect of control parameters on response measures. Surface topography study has been performed using scanning electron microscopy, and material composition analysis has been carried out using energy dispersive spectroscopy. The surface roughness is observed lower for brass, while the edge deviation is found lesser for german silver. The material removal rate is observed higher for brass compared to german silver.  相似文献   
5.
6.
Electrical discharge machining (EDM) is one of the most accepted machining processes in the precision manufacturing industry. In EDM process, finding an alternative tool material is the demand in modern manufacturing industry. Therefore, an attempt had been made to fabricate copper–titanium diboride powder metallurgy electrode to test in EDM on monel 400? material. The experiments are planned using center composite second-order rotatable design and the model is developed by response surface methodology. The machining characteristics have analyzed using the developed model. In this study, four input parameters such as titanium diboride percentage, pulse current, pulse on time, and flushing pressure are selected to evaluate the material removal rate (MRR) and tool wear rate (TWR). The adequacy of the developed regression model has tested through analysis of variance test. The desirability-based multiobjective optimization is used to find the optimal process parameter which has given maximum MRR and minimum TWR. The optimum process parameters obtained were titanium diboride of 16%, pulse current of 6 A, flushing pressure of 1 Mpa, and pulse on time of 35?µs. The validity of the response surface model is further verified by conducting confirmation experiments.  相似文献   
7.
To investigate on the crystalline structure of AISI M2 steel by using tungsten–thorium electrode in electrical discharge machining (EDM) process was studied. Furthermore, the investigation were carried out for finding the value of material removal rate (MRR), electrode wear rate (EWR) and surface roughness (SR) of tool steel material depending upon three variable input process parameters. On the basis of weight loss, the value of MRR and EWR were calculated at optimized process parameter. Subsequently, surface topography of the processed material were examined through different characterization techniques like scanning electron microscopy (SEM), Optical surface profiler (OSP) and Atomic force microscopy (AFM), respectively. In XRD study, broadening of the peak was observed which confirmed the change in material properties due to the homogeneous dispersion of the particles inside the matrix. Lowest surface roughness and MRR of 0.001208 mg/min was obtained. Minimum surface roughness was obtained 1.12 μm and 2.18427 nm by OSP and AFM study, respectively. Also, minimum EWR was found as 0.013986 mg/min.  相似文献   
8.
The fabrication processes for electronic components are now demanding a higher degree of planarity for integration and multistacking, with chemical mechanical polishing (CMP) processes replacing conventional etching or mechanical polishing owing to their ability to attain global planarization. As CMP has been applied to more and more fields, new types of CMP machines have been developed. This study introduces a novel roll-type linear CMP (Roll-CMP) process that uses a line-contact material removal mechanism to for the polish flexible substrates, and examines the effect of the process parameters on the material removal rate (MRR) and its nonuniformity (NU). The parameters affecting the Roll-CMP process include down force, roll speed, table feed rate, slurry flow rate, slurry temperature, and the table oscillation length. Increasing the down force, roll speed, slurry flow rate, and slurry temperature resulted in a high average MRR (MRRavg). Further, the MRRavg was found to decrease with an increase in the oscillation length because of the effect of the polishing area. A large down force, high roll speed, high table feed rate, and high slurry flow rate were effective for reducing the NU. These results will be helpful for understanding the newly developed Roll-CMP process.  相似文献   
9.
Effect of abrasive particle concentration on material removal rate (MRR), MRR per particle and the surface quality in the preliminary chemical mechanical polishing (CMP) of rough glass substrate was investigated. Experimental results showed that the MRR increases linearly with the increase of abrasive concentration and reaches to the maximum when the abrasive concentration is 20 wt.%, and then tends to be stable. When the abrasive concentration increases from 2 to 5 wt.%, the MRR per particle increases greatly and reaches a peak. Then the MRR per particle decreases almost linearly with the increase of the abrasive concentration. The root mean squares (RMS) roughness almost decreases with increasing particle concentration. In addition, in situ coefficient of friction (COF) was also conducted during the polishing process and the zeta potentials of abrasive particles in slurry with different solid concentration were also characterized. Results show that COF value is not related to zeta potential but be sensitive to glass surface conditions in terms of rough peaks in preliminary polishing of glass substrate.  相似文献   
10.
There is a growing interest in the machining of micro-holes with high aspect-ratio in difficult-to-machine alloys for the aerospace industry. Processes based on electro discharge machining (EDM) and developed for the manufacture of both micro-electrode and micro-hole are actually used, but most of them involve micro-EDM machines. In this work, the influence of EDM parameters on material removal rate, electrode wear, machining time and micro-hole quality when machining Ti6Al4V is studied. Due to an inefficient removal of debris when increasing hole depth, a new strategy based on the use of helical-shaped electrodes has been proposed. The influence of helix angle and flute depth with respect to process performance has been addressed. Main results include 37% reduction in machining times (hole diameter 800 μm) when using electrode helix angle of 45° and flute-depth of 50 μm, and an additional 19% with flute-depth of 150 μm. Holes of 661 μm diameter and as much as 6.81 mm depth, which yields in aspect ratio of 10:1, have successfully been machined in Ti6Al4V.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号