首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16414篇
  免费   2443篇
  国内免费   1164篇
电工技术   388篇
综合类   1057篇
化学工业   4110篇
金属工艺   1990篇
机械仪表   881篇
建筑科学   627篇
矿业工程   253篇
能源动力   1164篇
轻工业   1138篇
水利工程   269篇
石油天然气   421篇
武器工业   73篇
无线电   1637篇
一般工业技术   2637篇
冶金工业   1409篇
原子能技术   516篇
自动化技术   1451篇
  2024年   56篇
  2023年   298篇
  2022年   399篇
  2021年   550篇
  2020年   546篇
  2019年   570篇
  2018年   558篇
  2017年   687篇
  2016年   623篇
  2015年   625篇
  2014年   907篇
  2013年   1463篇
  2012年   1120篇
  2011年   1190篇
  2010年   854篇
  2009年   923篇
  2008年   868篇
  2007年   1031篇
  2006年   930篇
  2005年   722篇
  2004年   692篇
  2003年   609篇
  2002年   550篇
  2001年   435篇
  2000年   425篇
  1999年   325篇
  1998年   280篇
  1997年   259篇
  1996年   218篇
  1995年   198篇
  1994年   160篇
  1993年   133篇
  1992年   108篇
  1991年   114篇
  1990年   109篇
  1989年   101篇
  1988年   69篇
  1987年   42篇
  1986年   28篇
  1985年   50篇
  1984年   41篇
  1983年   18篇
  1982年   51篇
  1981年   25篇
  1980年   13篇
  1979年   8篇
  1978年   10篇
  1976年   5篇
  1975年   8篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(22):32973-32985
Multilayer structure design is one of the most promising methods for improving the comprehensive performance of AlCrN-based hard coatings applied to cutting tools. In this study, four types of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings, with different modulated thicknesses, were deposited to investigate their microstructure, mechanical, tribological, and oxidizing properties. All multilayer coatings exhibited grain growth along the crystallographic plane of (200) with a NaCl-type face-centered cubic (FCC) structure. The results show that, as the modulation thickness decreases from ~35 nm to ~10 nm, (1) the grain refinement effect is increasingly evident; (2) all multilayer coatings show a hardness of >30 GPa and an elastic modulus of >300 GPa. Both the ability to resist elastic strain to failure and the plastic deformation of multilayer coatings increase. In addition, their resistance to cracking reduces; (3) the wear rates of these multilayer coatings reduce successively from 1.78 × 10?16 m3 N?1 m?1 to 7.7 × 10?17 m3 N?1 m?1. This is attributed to an increase in self-lubricating VOx and a decrease in adhesives from the counterparts; (4) the best high-temperature oxidation resistance was obtained for the multilayer coating with a modulated thickness of ~15 nm.  相似文献   
2.
In this article, pre-assembly hot-press pressure and thermal expansion effects in gas-diffusion layers (GDLs) are addressed to explore the practicalities of the constitutive model reported in the companion article. A facile technique is proposed to include deformation history dependent residual strain effects. The model is implemented in the numerical environment and compared with widely followed conventional models such as isotropic and orthotropic material models. With the normal and accelerated thermal expansion effects no significant variation in stresses or strains is reported with the compressible GDL model in contrast to the conventional incompressible form of the GDL model. The present work identifies the critical differences with advanced and extended variants of the model along with conventional GDL material models in terms of planar stress/strain distribution and the membrane response. Finally, the model is simulated for micro-cyclic stress loads of varying amplitudes that imitate the real working conditions of fuel cell. The inelastic energy dissipation in GDLs is predicted using the proposed model, which is utilized further to distinguish the safe (elastic) and unsafe (inelastic shakedown) operating limits. The inelastic collapse of GDLs is shown to be a active function of high amplitude micro-cyclic load with high initial clamping load.  相似文献   
3.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   
4.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
5.
This work focuses on identifying the rate-determining step of oxygen transport through La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes with symmetric and asymmetric architectures. The best oxygen semipermeation fluxes are 3.4 10−3 mol. m-2.s-1 and 6.3 10−3 mol. m-2.s-1 at 900 °C for the symmetric membrane and asymmetric membrane with a modified surface. The asymmetric membrane with a modified surface leads to an increase of approximately 7 times the oxygen flux compared to that obtained with the La0.5Sr0.5Fe0.7Ga0.3O3-δ dense membrane without surface modification. This work also shows that the oxygen flux is mainly governed by gaseous oxygen diffusion through the porous support of asymmetric La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes.  相似文献   
6.
In this paper we combine video compression and modern image processing methods. We construct novel iterative filter methods for prediction signals based on Partial Differential Equation (PDE) based methods. The mathematical framework of the employed diffusion filter class is given and some desirable properties are stated. In particular, two types of diffusion filters are constructed: a uniform diffusion filter using a fixed filter mask and a signal adaptive diffusion filter that incorporates the structures of the underlying prediction signal. The latter has the advantage of not attenuating existing edges while the uniform filter is less complex. The filters are embedded into a software based on HEVC with additional QTBT (Quadtree plus Binary Tree) and MTT (Multi-Type-Tree) block structure. In this setting, several measures to reduce the coding complexity of the tool are introduced, discussed and tested thoroughly. The coding complexity is reduced by up to 70% while maintaining over 80% of the gain. Overall, the diffusion filter method achieves average bitrate savings of 2.27% for Random Access having an average encoder runtime complexity of 119% and 117% decoder runtime complexity. For individual test sequences, results of 7.36% for Random Access are accomplished.  相似文献   
7.
The effect of doping corundum with lanthanum on the content of water and other gas impurities, on the diffusion characteristics, on the unit cell size and static strength of fine-crystalline corundum synthesized under thermovapours conditions in a supercritical water fluid was studied.Content, release and diffusion coefficients of water and other volatile impurities in corundum were measured by kinetic thermodesorption mass spectrometry. Water is the main volatile impurity in fine-crystalline corundum. It was found that the introduction of lanthanum into the structure of corundum reduces several times the content of water and other gas-liquid impurities. An increase in the diffusion coefficient of water during the doping of corundum with lanthanum leads to an increase in the degassing rate of fine-crystalline raw materials. When doping corundum, lanthanum, being localized in structural defects, not only displaces structural hydroxyl groups with the formation of strong aluminate-like bonds, but also decreases in the unit cell and increases in the average static strength of the crystals. La-doped corundum, due to the reduced content of water and other gas impurities, is a promising raw material for the production of transparent ceramics.  相似文献   
8.
Proton exchange membrane fuel cells (PEMFCs) have become the most attractive power supply units for stationary and mobile applications. The operation, design characteristics, as well as performance of PEMFCs, are closely related to the multiphase transport of mass, heat, and electricity in the cell, a critical of which is the gas diffusion layer (GDL). It is very important to guarantee the transmission of water and gasses under high current density, and which is the weakness of PEMFCs at present. Microporous layer (MPL) is considered to be the key variable for mass transfer, so varieties of works focus on modification of MPL materials and its structure design. However, there is still a lack of special review to summarize and prospect the progress of MPL in recent years. This review article therefore focuses on the insights and comprehensive understanding of four critical issues of the MPL, the porosity, pore size distribution, wettability, structural design and the durability of MPL. At last, the conclusion and recommendations section summarized the future prospects and recommendations for possible research opportunities.  相似文献   
9.
Abstract

The expected longer service life of modified asphalt can be jeopardized by different environmental factors, such as moisture, oxidation, etc. which affect the desired properties by altering the adhesive property. An insight into knowledge of the adhesive property of the asphalt can help in providing more durable asphalt pavement. The study attempted to develop different models of adhesive properties of polymers and carbon nanotubes (CNTs) modified asphalt binders. The polymer-CNT modified asphalt is processed to prepare different types of samples, by simulating the damage due to moisture and oxidization, following the corresponding standard method. An Atomic Force Microscopy (AFM) was employed to assess the nanoscale adhesion force of the tested samples following the existing functional group in asphalt. Finally, the study has developed Radial Basis Function Neural Network (RBFNN) as a function of different parameters including; asphalt chemistry (i.e. AFM tip type and constant), type and percentages of polymers and CNTs and different environmental exposures (oxidation, moisture, etc.) to predict the nano adhesion force of asphalt. It is observed that the adhesive property of the Styrene–Butadiene modified asphalt is more consistent compared to the Styrene–Butadiene–Styrene modified asphalt, while the presence of Single-Wall Nanotubes (SWNT) is observed to affect the adhesive properties of asphalt significantly as compared to Multi-Wall Nanotubes (MWNT). The higher accuracy level of RBFNN model also indicates that the functional group (tip-type) adding with the percentages and types of polymers and CNTs significantly affect the adhesive properties of asphalt.  相似文献   
10.
A uniform solid product layer normally assumed in the shrinking-core model cannot predict the kinetic transition behavior of the H2 adsorption reactions. In this study, the concept of a uniform solid product layer has been replaced by that of the inward growth of solid products on the solid surface. A rate equation is established to calculate the inward growth of the solid product and was implemented into the shrinking-core model to calculate the H2 adsorption kinetics for various shapes of Mg-based materials. The prediction accuracy of the developed model is verified from the detailed experimental data. To account for the external gas diffusion around the particle and the intraparticle gas diffusion, an analytical equation is derived using the Thiele modulus method. This model can be used to analyze various kinetic aspects and to analyze the effect of change in the particle microstructure on intraparticle diffusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号