首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20571篇
  免费   1657篇
  国内免费   1010篇
电工技术   1327篇
综合类   1144篇
化学工业   8770篇
金属工艺   1593篇
机械仪表   413篇
建筑科学   196篇
矿业工程   226篇
能源动力   1525篇
轻工业   557篇
水利工程   47篇
石油天然气   3476篇
武器工业   94篇
无线电   777篇
一般工业技术   1560篇
冶金工业   842篇
原子能技术   142篇
自动化技术   549篇
  2024年   41篇
  2023年   260篇
  2022年   437篇
  2021年   542篇
  2020年   605篇
  2019年   616篇
  2018年   505篇
  2017年   605篇
  2016年   658篇
  2015年   627篇
  2014年   1005篇
  2013年   1074篇
  2012年   1269篇
  2011年   1564篇
  2010年   1209篇
  2009年   1269篇
  2008年   1182篇
  2007年   1380篇
  2006年   1261篇
  2005年   1025篇
  2004年   975篇
  2003年   907篇
  2002年   738篇
  2001年   684篇
  2000年   577篇
  1999年   448篇
  1998年   406篇
  1997年   303篇
  1996年   248篇
  1995年   180篇
  1994年   157篇
  1993年   115篇
  1992年   101篇
  1991年   66篇
  1990年   51篇
  1989年   29篇
  1988年   23篇
  1987年   16篇
  1986年   10篇
  1985年   23篇
  1984年   18篇
  1983年   11篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1964年   1篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Due to stringent environmental regulations and the limited resources of fossil-based fuels, there is an urgent demand for clean and eco-friendly energy conversion devices. These criteria appear to be met by hydrogen proton exchange membrane fuel cells (PEMFCs). PEMFCs have attracted tremendous attention on account of their excellent performance with tunable operability and good portability. Nonetheless, their practical applications are hugely influenced by the scarcity and high cost of platinum (Pt) used as electrocatalysts at both cathode and anode. Pt is also susceptible to easy catalyst poisoning. Herein, this paper reviews the progress of the research regarding the development of electrocatalysts practically used in hydrogen PEMFCs, where the corner-stone reactions are cathodic oxygen reduction reaction (ORR) and anodic hydrogen oxidation reaction (HOR). To reduce the costs of PEMFCs, lessening or eliminating the use of Pt is of prime importance. For current and forthcoming laboratory/large-scale PEMFCs, there is much interest in developing substitute catalysts based on cheaper materials. As such are non-platinum (non-Pt), non-platinum group metals (non-PGMs), metal oxides, and non-metal electrocatalysts. Hence, high-performance, state-of-the-art, and novel structured electrocatalysts as replacements for Pt are needed.  相似文献   
2.
The continuous catalytic regenerative (CCR) reforming process is one of the most significant sources of hydrogen production in the petroleum refining process. However, the fluctuations in feedstock composition and flow rate could significantly affect both product distribution and energy consumption. In this study, a robust deviation criterion based multi-objective optimization approach is proposed to perform the optimal operation of CCR reformer under feedstock uncertainty, with simultaneous maximization of product yields and minimization of energy consumption. Minimax approach is adopted to handle these uncertain objectives, and the Latin hypercube sampling method is then used to calculate these robust deviation criteria. Multi-objective surrogate-based optimization methods are next introduced to effectively solve the robust operational problem with high computational cost. The level diagram method is finally utilized to assist in multi-criteria decision-making. Two robust operational optimization problems with different objectives are solved to demonstrate the effectiveness of the proposed method for robust optimal operation of the CCR reforming process under feedstock uncertainty.  相似文献   
3.
通过固液掺杂、等静压压制、中频烧结的方法,制备了不同的氧化镧、氧化钇、氧化锆三元掺杂成分比例的钨电极材料烧结棒材,探究了不同成分配比对样品显微组织、第二相粒子分布以及宏观力学性能的影响。结果表明,氧化镧、氧化钇、氧化锆三元复合添加能够有效改善第二相粒子在钨基体中的分布形态,降低第二相在晶界的过度富集,提高钨电极材料的综合力学性能。并且当添加成分镧、钇、锆质量比为3:1:1时,材料具有最好的综合力学性能,致密度可达96.04%,显微硬度可达549.37HV0.3,抗压强度可达3785MPa,原因是此配比下第二相粒子最为细小均匀,弥散程度最高,对基体晶粒的细化作用最好,该配比下钨基体平均晶粒尺寸达到10.3μm。  相似文献   
4.
A technology for cyclic generation of hydrogen and oxygen using electrodes made of variable valency material that does not need the use of separating ion-exchange membranes is presented. The technological solution enables to fabricate electrolyzers for uninterrupted producing high-pressure hydrogen with reduced energy intensity of the production. The total work for compressing 1 m3 of hydrogen and 0.5 m3 of oxygen has been estimated. Results of investigation of influence of discrete supply of DC current to the electrolysis cell, in order to improve the processes of gas evolution and to simplify the power systems of the electrolysis plant, have been considered. There is also considered an electrolysis installation equipped with a thermosorption compressor in which LaNi5 is used as a hydride-forming compound. The comparative characteristics of the developed electrolyzer and the currently used hydrogen generators are given.  相似文献   
5.
This paper carefully evaluates the electrocatalytic activity of Sr2FeMo0.5Mn0.5O6 (SFMM) double perovskite as a candidate to substitute the state-of-the-art Ni/YSZ fuel electrode. The electrochemical performance of a 40% SFMM/CGO composite electrode was studied in CO/CO2 and H2 with different oxygen partial pressure. Two different cell configurations are prepared at a relatively low temperature of 800 °C to increase the electrochemically active surface area. The cell was supported with a 150 μm 10Sc1CeSZ electrolyte in the first configuration. The cell in the second configuration was made by applying a 400 nm thin 8YSZ layer on 150 μm CGO electrolyte to improve the electrolyte ionic conductivity. Improving catalytic activity with increasing oxygen partial pressure is a key characteristic of the developed electrode. The polarization resistance of about 0.34 and 0.56 Ω cm2 at 750 °C in 3%H2O + H2 and 60% CO/CO2 makes this electrode a promising candidate for SOCs application.  相似文献   
6.
中国石化海南炼油化工有限公司0.2 Mt/a C5/C6烷烃异构化装置以连续重整装置的拔头油为原料,使用NNI-1催化剂,采用一次通过流程,不设脱异戊烷塔和稳定塔,经设在连续重整装置内的脱丁烷塔稳定处理后作为汽油调合组分。该装置于2006年9月开工投产,截至2015年3月已连续运行3个周期。长周期运行分析结果表明:前两个周期中NNI-1催化剂具有较高的异构化活性及选择性,C5异构化率为60%左右,C6异构化率为80%左右,C6选择性为15%左右,产品辛烷值基本达到技术指标要求(RON≥78);而在第三周期运行中,催化剂积炭增加等原因导致其异构化活性及选择性降低,异构化产品辛烷值提升能力呈现逐步衰减的趋势,提高反应苛刻度已不能弥补催化剂活性下降造成的产品辛烷值降低。为保证装置长周期运行,建议择机停工对催化剂进行再生,或是直接换用与装置原料性质匹配的异构化催化剂。  相似文献   
7.
We propose all printed and highly stable organic resistive switching device (ORSD) based on graphene quantum dots (G-QDs) and polyvinylpyrrolidone (PVP) composite for non-volatile memory applications. It is fabricated by sandwiching G-QDs/PVP composite between top and bottom silver (Ag) electrodes on a flexible substrate polyethylene terephthalate (PET) at ambient conditions through a cost effective and eco-friendly electro-hydrodynamic (EHD) technique. Thickness of the active layer is measured around 97 nm. The proposed ORSD is fabricated in a 3 × 3 crossbar array. It operates switching between high resistance state (HRS) and low resistance state (LRS) with OFF/ON ratio ∼14 for more than 500 endurance cycles, and retention time for more than 30 days. The switching voltage for set/reset of the devices is ±1.8 V and the bendability down to 8 mm diameter for 1000 cycles are tested. The elemental composition and surface morphology are characterized by XPS, FE-SEM, and microscope.  相似文献   
8.
The electrode ionomer is a key factor that significantly affects the catalyst layer morphology and fuel cell performance. Herein, sulfonated poly(arylene ether sulfone)-based electrode ionomers with polymers of various molecular weights and alcohol/water mixtures were prepared, and those comprising the alcohol/water mixture showed a higher performance than the ones prepared using higher boiling solvents, such as dimethylacetamide; this is owing to the formation of the uniformly dispersed ionomer catalyst layer. The relation between ionomer molecular weight for the same polymer structure and the sulfonation degree was investigated. Because the chain length of polymer varies with molecular weight and chain entanglement degree, its molecular weight affects the electrode morphology. As the ionomer covered the catalyst, the agglomerates formed were of different morphologies according to their molecular weight, which could be deduced indirectly through dynamic light scattering and scanning electron microscopy. Additionally, the fuel cell performance was confirmed in the current-voltage curve.  相似文献   
9.
In continuation to my previous work (Guha S. AIChE J. 2013;59(4):1390-1399), in this work, effects of ionic migration are evaluated for disk region of a rotating ring disk electrode system by numerically solving complex differential equations, developed for mass transfer along with kinetic complication in presence of ionic migration under limiting current condition. The system for simulation is 0.01 M Fe2(SO4)3 solution with H2SO4 as supporting electrolyte. Simulation cases are presence and absence of ionic migration with kinetic complication (oxidation of Fe2+ to Fe3+ under O2 pressure). Results show that concentration boundary layer thickness of reactant Fe3+ reduces appreciably and steady-state disk current reduces substantially in presence of migration. Simulated steady-state disk current in absence of migration case agrees well with published data. Results indicate higher Fe2+ concentration in presence of migration and thereby higher rate of oxidation of Fe2+ to Fe3+ at all rate constant values.  相似文献   
10.
Replacement of precious single metal catalysts with cost-effective, highly-dispersed composite catalysts for catalytic hydrothermal conversion of residue holds tremendous promise for the residue upgrading technologies. Organic metals were added to the feed as the oil-soluble precursors, and transformed into the catalytic active phases in this work. Physical properties and structures of the composite catalysts had been investigated by X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscope and transmission electron microscopy. The composite catalysts were found to be highly efficient in the catalytic hydrothermal conversion of both model compound and residue. Increased metal dispersion and synergistic effects of two metals played indispensable roles in such catalytic system. Results showed that under the test conditions in the article, the catalyst had the best catalytic performance when the mass ratio of molybdenum to iron was 1.5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号