首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53840篇
  免费   5566篇
  国内免费   4920篇
电工技术   5458篇
技术理论   1篇
综合类   5488篇
化学工业   8542篇
金属工艺   5027篇
机械仪表   6043篇
建筑科学   4251篇
矿业工程   2556篇
能源动力   1599篇
轻工业   3051篇
水利工程   2370篇
石油天然气   2995篇
武器工业   686篇
无线电   2770篇
一般工业技术   5174篇
冶金工业   1990篇
原子能技术   831篇
自动化技术   5494篇
  2024年   327篇
  2023年   1425篇
  2022年   2512篇
  2021年   2595篇
  2020年   2150篇
  2019年   1707篇
  2018年   1537篇
  2017年   1811篇
  2016年   1936篇
  2015年   1999篇
  2014年   3011篇
  2013年   2658篇
  2012年   3619篇
  2011年   3904篇
  2010年   2972篇
  2009年   3224篇
  2008年   2874篇
  2007年   3699篇
  2006年   3444篇
  2005年   2867篇
  2004年   2313篇
  2003年   2127篇
  2002年   1707篇
  2001年   1424篇
  2000年   1245篇
  1999年   1030篇
  1998年   846篇
  1997年   652篇
  1996年   533篇
  1995年   479篇
  1994年   417篇
  1993年   272篇
  1992年   220篇
  1991年   206篇
  1990年   137篇
  1989年   106篇
  1988年   88篇
  1987年   42篇
  1986年   34篇
  1985年   33篇
  1984年   23篇
  1983年   20篇
  1982年   21篇
  1981年   15篇
  1980年   21篇
  1979年   9篇
  1977年   4篇
  1975年   4篇
  1959年   4篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
1.
2.
《Ceramics International》2022,48(16):23341-23347
In recent years, the rapid development of Li(NixCoyMn1-x-y)O2 (LNCM) materials for application in ternary lithium-ion batteries has led to an increased demand for refractory kiln saggars in industries. However, saggars used for firing ternary Li-ion battery cathode materials are often subjected to severe corrosion and spalling. To investigate the damage mechanism of the saggar materials, non-contact corrosion experiments were designed to study the effects of the precursor additions, calcination temperature, and number of calcinations during the interaction between mullite saggar and LNCM materials. The phase composition and microstructure of the mullite saggar specimens before and after corrosion were characterized using X-ray diffraction and scanning electron microscopy, respectively, to obtain a comprehensive understanding of the causes of the deterioration of mullite saggar materials during corrosion.  相似文献   
3.
死亡风险预测指根据病人临床体征监测数据来预测未来一段时间的死亡风险。对于ICU病患,通过死亡风险预测可以有针对性地对病人做出临床诊断,以及合理安排有限的医疗资源。基于临床使用的MEWS和Glasgow昏迷评分量表,针对ICU病人临床监测的17项生理参数,提出一种基于多通道的ICU脑血管疾病死亡风险预测模型。引入多通道概念应用于BiLSTM模型,用于突出每个生理参数对死亡风险预测的作用。采用Attention机制用于提高模型预测精度。实验数据来自MIMIC [Ⅲ]数据库,从中提取3?080位脑血管疾病患者的16?260条记录用于此次研究,除了六组超参数实验之外,将所提模型与LSTM、Multichannel-BiLSTM、逻辑回归(logistic regression)和支持向量机(support vector machine, SVM)四种模型进行了对比分析,准确率Accuracy、灵敏度Sensitive、特异性Specificity、AUC-ROC和AUC-PRC作为评价指标,实验结果表明,所提模型性能优于其他模型,AUC值达到94.3%。  相似文献   
4.
Carbon dioxide (CO2) and methane (CH4) are the primary greenhouse gases (GHGs) that drive global climate change. CO2 reforming of CH4 or dry reforming of CH4 (DRM) is used for the simultaneous conversion of CO2 and CH4 into syngas and higher hydrocarbons. In this study, DRM was investigated using Ag–Ni/Al2O3 packing and Sn–Ni/Al2O3 packing in a parallel plate dielectric barrier discharge (DBD) reactor. The performance of the DBD reactor was significantly enhanced when applying Ag–Ni/Al2O3 and Sn–Ni/Al2O3 due to the relatively high electrical conductivity of Ag and Sn as well as their anti-coke performances. Using Ag–Ni/Al2O3 consisting of 1.5 wt% Ag and 5 wt% Ni/Al2O3 as the catalyst in the DBD reactor, 19% CH4 conversion, 21% CO2 conversion, 60% H2 selectivity, 81% CO selectivity, energy efficiency of 7.9% and 0.74% (by mole) coke formation were achieved. In addition, using Sn–Ni/Al2O3, consisting of 0.5 wt% Sn and 5 wt% Ni/Al2O3, 15% CH4 conversion, 19% CO2 conversion, 64% H2 selectivity, 70% CO selectivity, energy efficiency of 6.0%, and 2.1% (by mole) coke formation were achieved. Sn enhanced the reactant conversions and energy efficiency, and resulted in a reduction in coke formation; these results are comparable to that achieved when using the noble metal Ag. The decrease in the formation of coke could be correlated to the increase in the CO selectivity of the catalyst. Good dispersion of the secondary metals on Ni was found to be an important factor for the observed increases in the catalyst surface area and catalytic activities. Furthermore, the stability of the catalytic reactions was investigated for 1800 min over the 0.5 wt% Ag-5 wt% Ni/Al2O3 and 0.5 wt% Sn-5 wt% Ni/Al2O3 catalysts. The results showed an increase in the reactant conversions with an increase in the reaction time.  相似文献   
5.
Aggregate question answering essentially returns answers for given questions by obtaining query graphs with unique dependencies between values and corresponding objects. Word order dependency, as the key to uniquely identify dependency of the query graph, reflects the dependencies between the words in the question. However, due to the semantic gap caused by the expression difference between questions encoded with word vectors and query graphs represented with logical formal elements, it is not trivial to match the correct query graph for the question. Most existing approaches design more expressive query graphs for complex questions and rank them just by directly calculating their similarities, ignoring the semantic gap between them. In this paper, we propose a novel Structure-sensitive Semantic Matching(SSM) approach that learns aligned representations of dependencies in questions and query graphs to eliminate their gap. First, we propose a cross-structure matching module to bridge the gap between two modalities(i.e., textual question and query graph). Then, we propose an entropy-based gated AQG filter to remove the structural noise caused by the uncertainty of dependencies. Finally, we present a two-channel query graph representation that fuses the semantics of abstract structure and grounding content of the query graph explicitly. Experimental results show that SSM could learn aligned representations of questions and query graphs to eliminate the gaps between their dependencies, and improves up to 12% (F1 score) on aggregation questions of two benchmark datasets.  相似文献   
6.
To provide a basis for the high-temperature oxidation of ultra-high temperature ceramics (UHTCs), the oxidation behavior of Zr3[Al(Si)]4C6 and a novel Zr3[Al(Si)]4C6-ZrB2-SiC composite at 1500 °C were investigated for the first time. From the calculation results, the oxidation kinetics of the two specimens follow the oxidation dynamic parabolic law. Zr3[Al(Si)]4C6 exhibited a thinner oxide scale and lower oxidation rate than those of the composite under the same conditions. The oxide scale of Zr3[Al(Si)]4C6 exhibited a two-layer structure, while that of the composite exhibited a three-layer structure. Owing to the volatilization of B2O3 and the active oxidation of SiC, a porous oxide layer formed in the oxide scale of the composite, resulting in the degradation of its oxidation performance. Furthermore, the cracks and defects in the oxide scale of the composite indicate that the reliability of the oxide scale was poor. The results support the service temperature of the obtained ceramics.  相似文献   
7.
8.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
9.
现有的图像修复方法在处理大面积缺失或高度纹理化的图像时,通常会产生扭曲的结构或与周围区域不一致的模糊纹理,无法重建合理的图像结构。为此,提出了一种基于推理注意力机制的二阶段网络图像修复方法。首先通过边缘生成网络生成合理的幻觉边缘信息,然后在图像补全网络完成图像的重建工作。为了进一步生成视觉效果更逼真的图像,提高图像修复的精确度,在图像补全网络采用推理注意力机制,有效控制了生成特征的不一致性,从而生成更有效的信息。所提方法在多个数据集上进行了实验验证,结果表明该图像修复方法的结构相似性指数达到了88.9%,峰值信噪比达到了25.56 dB,与现有的图像修复方法相比,该方法具有更高的图像修复精确度,生成的图像更逼真。  相似文献   
10.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号