首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80474篇
  免费   8762篇
  国内免费   4395篇
电工技术   12248篇
技术理论   13篇
综合类   5816篇
化学工业   9923篇
金属工艺   3791篇
机械仪表   4644篇
建筑科学   10106篇
矿业工程   2357篇
能源动力   13097篇
轻工业   2776篇
水利工程   1479篇
石油天然气   2346篇
武器工业   692篇
无线电   5491篇
一般工业技术   8476篇
冶金工业   3944篇
原子能技术   1338篇
自动化技术   5094篇
  2024年   341篇
  2023年   1732篇
  2022年   2749篇
  2021年   3145篇
  2020年   3381篇
  2019年   2993篇
  2018年   2548篇
  2017年   3064篇
  2016年   3388篇
  2015年   3333篇
  2014年   5517篇
  2013年   5323篇
  2012年   5825篇
  2011年   6541篇
  2010年   4979篇
  2009年   5056篇
  2008年   4585篇
  2007年   5102篇
  2006年   4068篇
  2005年   3210篇
  2004年   2664篇
  2003年   2291篇
  2002年   2027篇
  2001年   1718篇
  2000年   1509篇
  1999年   1177篇
  1998年   938篇
  1997年   735篇
  1996年   642篇
  1995年   507篇
  1994年   444篇
  1993年   370篇
  1992年   277篇
  1991年   251篇
  1990年   215篇
  1989年   161篇
  1988年   137篇
  1987年   101篇
  1986年   80篇
  1985年   109篇
  1984年   94篇
  1983年   57篇
  1982年   76篇
  1981年   34篇
  1980年   45篇
  1979年   26篇
  1978年   13篇
  1977年   12篇
  1959年   7篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
In this article, pre-assembly hot-press pressure and thermal expansion effects in gas-diffusion layers (GDLs) are addressed to explore the practicalities of the constitutive model reported in the companion article. A facile technique is proposed to include deformation history dependent residual strain effects. The model is implemented in the numerical environment and compared with widely followed conventional models such as isotropic and orthotropic material models. With the normal and accelerated thermal expansion effects no significant variation in stresses or strains is reported with the compressible GDL model in contrast to the conventional incompressible form of the GDL model. The present work identifies the critical differences with advanced and extended variants of the model along with conventional GDL material models in terms of planar stress/strain distribution and the membrane response. Finally, the model is simulated for micro-cyclic stress loads of varying amplitudes that imitate the real working conditions of fuel cell. The inelastic energy dissipation in GDLs is predicted using the proposed model, which is utilized further to distinguish the safe (elastic) and unsafe (inelastic shakedown) operating limits. The inelastic collapse of GDLs is shown to be a active function of high amplitude micro-cyclic load with high initial clamping load.  相似文献   
2.
3.
To satisfy arising energy needs and to handle the forthcoming worldwide climate transformation, the major research attention has been drawn to environmentally friendly, renewable and abundant energy resources. Hydrogen plays an ideal and significant role is such resources, due to its non-carbon based energy and production through clean energy. In this work, we have explored catalytic activity of a newly predicted haeckelite boron nitride quantum dot (haeck-BNQD), constructed from the infinite BN sheet, for its utilization in hydrogen production. Density functional theory calculations are employed to investigate geometry optimization, electronic and adsorption mechanism of haeck-BNQD using Gaussian16 package, employing the hybrid B3LYP and wB97XD functionals, along with 6–31G(d,p) basis set. A number of physical quantities such as HOMO/LUMO energies, density of states, hydrogen atom adsorption energies, Mulliken populations, Gibbs free energy, work functions, overpotentials, etc., have been computed and analysed in the context of the catalytic performance of haeck-BNQD for the hydrogen-evolution reaction (HER). Based on our calculations, we predict that the best catalytic performance will be obtained for H adsorption on top of the squares or the octagons of haeck-BNQD. We hope that our prediction of most active catalytic sites on haeck-BNQD for HER will be put to test in future experiments.  相似文献   
4.
‘Renewable energy is an essential part of our strategy of decarbonization, decentralization, as well as digitalization of energy.’ – Isabelle Kocher.Current climate, health and economic condition of our globe demands the use of renewable energy and the development of novel materials for the efficient generation, storage and transportation of renewable energy. Hydrogen has been recognised as one of the most prominent carriers and green energy source with challenging storage, enabling decarbonization. Photocatalytic H2 (green hydrogen) production processes are targeting the intensification of separated solar energy harvesting, storage and electrolysis, conventionally yielding O2/H2. While catalysis is being investigated extensively, little is done on bridging the gap, related to reactor unit design, optimisation and scaling, be it that of material or of operation. Herein, metals, oxides, perovskites, nitrides, carbides, sulphides, phosphides, 2D structures and heterojunctions are compared in terms of parameters, allowing for efficiency, thermodynamics or kinetics structure–activity relationships, such as the solar-to-hydrogen (STH). Moreover, prominent pilot systems are presented summarily.  相似文献   
5.
A new route of materials synthesis, namely, high-temperature, high-pressure reactive planetary ball milling (HTPRM), is presented. HTPRM allows for the mechanosynthesis of materials at fully controlled temperatures of up to 450 °C and pressures of up to 100 bar of hydrogen. As an example of this application, a successful synthesis of magnesium hydride is presented. The synthesis was performed at controlled temperatures (room temperature (RT), 100, 150, 200, 250, 300, and 325 °C) while milling in a planetary ball mill under hydrogen pressure (>50 bar). Very mild milling conditions (250 rpm) were applied for a total milling time of 2 h, and a milling vial with a relatively small diameter (φ = 53 mm, V = ~0.06 dm3) was used. The effect of different temperatures on the synthesis kinetics and outcome were examined. The particle morphology, phase composition, reaction yield, and particle size were measured and analysed by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) techniques. The obtained results showed that increasing the temperature of the process significantly improved the reaction rate, which suggested the great potential of this technique for the mechanochemical synthesis of materials.  相似文献   
6.
Development of highly efficient and cheap electrocatalysts towards the hydrogen evolution reaction (HER) is of great importance for electrochemical water splitting. Herein, hybrid Cu/NiMo-P nanowires on the copper foam were successfully fabricated via a simple two-step method. The hierarchically structured Cu/NiMo-P exhibits large surface areas and rapid electron transfer ability, leading to enhanced catalytic activity. The as-prepared Cu/NiMo-P electrodes need overpotentials of 34 mV and 130 mV to obtain 10 mA cm?2 for HER in acidic and alkaline solutions, respectively. Density functional theory (DFT) calculations reveal that the Cu/NiMo-P hybrid has a more thermo-neutral hydrogen adsorption free energy and enhanced charge transfer ability as well.  相似文献   
7.
Eco-friendly quantum dots (QDs) can be termed green QDs which stand as an attractive choice to modify the properties of known semiconductors in the direction of getting efficient photoelectrodes for solar-induced photoelectrochemical (PEC) splitting of water, due to their peculiar properties. Thus, it is of high significance to analyze their merit/demerit as an effective scaffold in PEC cell. QDs are known for their excellent optical properties however, the coupling of green QDs with semiconductor is not only useful in improving absorption characteristics but also promotes charge transfer. This review has undertaken the critical analysis on the worldwide research going on the green QDs modified photoelectrode with respect to their optical, electrical & photoelectrochemical properties, role, usefulness, efficiency, and finally the success in PEC system for hydrogen production. Various methods on the facile synthesis & sensitization techniques of green QDs available in the literature have also been discussed. Further, recent advances on the development of green QDs based photo-electrode, along with major challenges of using green QDs in this field have also been presented.  相似文献   
8.
乡村产业中的化石能源设备逐渐被电能技术替代,引起了乡村负荷波动增大、部分时段产生集中高负荷的问题。为了解决以上问题,将低品位清洁能源应用至乡村的茶叶生产中,针对烘茶全过程的工艺要求提出了跨临界CO2热泵烘茶技术;并以某茶叶生产乡村为对象,对其代表台区的全年日用电量及产茶日负荷进行了分析,得出采用CO2热泵烘茶后其负荷得到大幅度削减,整体可降低至原负荷的39.6%~46.8%,峰值负荷与平时负荷的比值由原本的13.6降至5.4~6.2。跨临界CO2热泵应用至农产品生产中可有效缓解乡村供电压力。  相似文献   
9.
《Ceramics International》2022,48(6):8325-8330
In this work, we propose a facile approach to fabricate Ti4+-doped Li3V2(PO4)3/C (abbreviated as C-LVTP) nanofibers using an electrospinning route followed by a high temperature treatment. In this designed nanocomposite, the ultrafine LVTP dots are homogeneously dispersed into one-dimensional carbon nanofibers and the Ti4+ doping does not destroy the crystal structure of monoclinic Li3V2(PO4)3. Compared to the undoped Li3V2(PO4)3/C (abbreviated as C-LVP), the as-fabricated C-LVTP fibers present higher reversible capacity, superior high-rate capability as well as better cyclic property. Especially, the C-LVT7%P cathode delivers not only high capacities of 187.2 and 160.3 mAh g?1 at 0.5 and 10 C respectively, but also stable cyclic property with the reversible capacity of 135.8 mAh g?1 at 20 C following 500-cycle spans. The good battery characteristics of C-LVT7%P can be mainly ascribed to Ti4+ doping, which can increase the electrical conductivity and Li+ diffusion coefficient.  相似文献   
10.
This work aimed to examine the performance of the hybrid sintering of clay ceramic in a microwave furnace, compared to the sintering process in a conventional furnace. The raw materials were subjected to X-ray fluorescence, loss on ignition (LOI), X-ray diffraction, particle size distribution, real specific mass, and thermogravimetric analyses. The red clay ceramic mass was prepared, extruded, pre-sintered in a conventional furnace at 600°C/60 min, and sintered at temperatures between 700 °C and 1100 °C. The sintering conventional (resistive oven) was carried out for 60 min with a heating rate of 10°C/min. In the microwave furnace, the sintering times were 5, 10, and 15 min, with a heating rate of 50°C/min, with a sintering chamber coated with silicon carbide (susceptor). The sintered specimens were characterized according to linear shrinkage, water absorption, apparent porosity, apparent specific mass, X-ray diffraction, Raman spectroscopy analysis, spectroscopy analysis in the ultraviolet and visible regions, microhardness, and scanning electron microscopy. The results showed that microwave sintering promoted an increase in the microhardness and apparent specific mass, and reduction in water absorption and apparent porosity values, due to greater densification in the microstructure. The best results occurred for specimens sintered at 1100°C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号