首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   12篇
  国内免费   3篇
化学工业   52篇
金属工艺   3篇
机械仪表   5篇
建筑科学   1篇
能源动力   3篇
轻工业   30篇
无线电   1篇
一般工业技术   3篇
冶金工业   2篇
自动化技术   1篇
  2023年   1篇
  2022年   14篇
  2021年   13篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   7篇
  2013年   9篇
  2012年   6篇
  2011年   7篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1986年   1篇
排序方式: 共有101条查询结果,搜索用时 31 毫秒
1.
2.
The voltage-gated proton channel, Hv1, also termed VSOP, was discovered in 2006. It has long been suggested that proton transport through voltage-gated proton channels regulate reactive oxygen species (ROS) production in phagocytes by counteracting the charge imbalance caused by the activation of NADPH oxidase. Discovery of Hv1/VSOP not only confirmed this process in phagocytes, but also led to the elucidation of novel functions in phagocytes. The compensation of charge by Hv1/VSOP sustains ROS production and is also crucial for promoting Ca2+ influx at the plasma membrane. In addition, proton extrusion into neutrophil phagosomes by Hv1/VSOP is necessary to maintain neutral phagosomal pH for the effective killing of bacteria. Contrary to the function of Hv1/VSOP as a positive regulator for ROS generation, it has been revealed that Hv1/VSOP also acts to inhibit ROS production in neutrophils. Hv1/VSOP inhibits hypochlorous acid production by regulating degranulation, leading to reduced inflammation upon fungal infection, and suppresses the activation of extracellular signal-regulated kinase (ERK) signaling by inhibiting ROS production. Thus, Hv1/VSOP is a two-way player regulating ROS production. Here, we review the functions of Hv1/VSOP in neutrophils and discuss future perspectives.  相似文献   
3.
To ascertain the possible implications of the nitric oxide (NO*) producing system in striatal senescence, and by using immunohistochemistry and image-processing approaches, we describe the presence of the enzyme nitric oxide synthase (NOS), the NADPH-diaphorase (NADPH-d) histochemical marker, and nitrotyrosine-derived complexes (N-Tyr) in the striatum of adult and aged rats. The results showed neuronal NOS immunoreactive (nNOS-IR) aspiny medium-sized neurons and nervous fibres in both age groups, with no variation in the percentage of immunoreactive area but a significant decrease in the intensity and in the number of somata with age, which were not related to the observed increase with age of the striatal bundles of the white matter. In addition, NADPH-d activity was detected in neurons with morphology similar to that of the nNOS-IR cells; a decrease in the percentage of area per field and in the number of cells, but an increase in the intensity of staining for the NADPH-d histochemical marker, were detected with age. The number of neuronal NADPH-d somata was higher than for the nNOS-IR ones in both age groups. Moreover, N-Tyr-IR complexes were observed in cells (neurons and glia) and fibres, with a significant increase in the percentage of the area of immunoreaction, related to the increase of white matter, but a decrease in intensity for the aged group. On the other hand, we did not detect the inducible isoform (iNOS) either in adult or in aged rats. Taken together, these results support the contention that NADPH-d staining is not such an unambiguous marker for nNOS, and that increased protein nitration may participate in striatal aging.  相似文献   
4.
This study investigated cellular Nicotinamide Adenine Dinucleotide Phosphate (NADPH) fluorescence as a potential indicator of biohydrogen production in Chlamydomonas reinhardtii and a β-NADPH standard. NADPH fluorescence profiles of cultures grown in TAP-S (Tris-acetate phosphate minus sulphur) media, TAP (Tris-acetate phosphate) media and TAP + 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) were subsequently compared. Hydrogen production induced from sulphur depletion was found to correlate directly (r = 0.941) with NADPH over the ten day period. The addition of leachate was used to increase hydrogen yields, and subsequently increased the NADPH concentration by 50%–70%. A direct correlation was observed (r = 0.929) between NADPH and hydrogen when the leachate supplemented media was used. As NADPH is the terminal electron acceptor in the photosynthetic chain, results show that NADPH has a pivotal role in hydrogen production as a carrier molecule. Under sulphur depletion, cellular NADPH fluorescence can be used as an indicator of hydrogen production.  相似文献   
5.
Extracellular matrix production by pleural mesothelial cells in response to Mycobacterium tuberculosis contributes to tuberculous fibrosis. NOX4 is involved in the pathogenesis of tuberculous fibrosis. In this study, we evaluated whether NOX4 gene-targeting microRNAs showed protective effects in tuberculosis fibrosis. TargetScan prediction software was used to identify candidate microRNAs that bind the 3′ UTRs of NOX4, and microRNA-148a (miR-148a) was selected as the best miRNA candidate. A repressed and forced expression assay in Met5A cells was performed to investigate the causal relationship between miR-148a and NOX4. The role of miR-148a in tuberculous pleural fibrosis was studied using a murine model of Mycobacterium bovis bacillus Calmette–Guérin (BCG) pleural infection. Heat-killed M. tuberculosis (HKMT) induces NOX4 and POLDIP2 expression. We demonstrated the inhibitory effect of miR-148a on NOX4 and POLDIP2 expression. The increased expression of miR-148a suppressed HKMT-induced collagen-1A synthesis in PMC cells. In the BCG pleurisy model, miR-148a significantly reduced fibrogenesis and epithelial mesenchymal transition. High levels of miR-148a in tuberculous pleural effusion can be interpreted as a self-limiting homeostatic response. Our data indicate that miR-148a may protect against tuberculous pleural fibrosis by regulating NOX4 and POLDIP2.  相似文献   
6.
Steryl glucosides (SG) are common contaminants in biodiesel that form precipitates, which form and cause problems due to fouling during transport and storage. Therefore, their quantification is necessary to assess the quality of this fuel. The methods currently available for SG analysis require expensive instrumentation, need a previous concentration step by solid‐phase extraction (SPE) or are of limited use for the quantitative assessment. We developed an enzymatic method for SG quantification in biodiesel samples based on the hydrolysis of the glucoside catalyzed by a broadly specific beta glucosidase and the subsequent determination of the glucose released by the reaction. The method is non‐expensive, sensitive and was adapted to 96‐well format fluorescence plate reader, making it useful for the parallel assay of multiple samples. The enzymatic assay presented here represent a valuable tool for both quality control and the development of improved biodiesel production and purification procedures.  相似文献   
7.
8.
Epidemiological and experimental studies provide supportive evidence that lutein, a major carotenoid, may act as a chemopreventive agent against atherosclerosis, although the underlying molecular mechanisms are not well understood. The main aim of this study was to investigate the effects of lutein on the alleviation of atherosclerosis and its molecular mechanisms involved in oxidative stress and lipid metabolism. Male apolipoprotein E knockout mice (n = 55) were fed either a normal chow diet or a high fat diet (HFD) supplemented with or without lutein for 24 weeks. The results showed that a HFD induced atherosclerosis formation, lipid metabolism disorders and oxidative stress, but noticeable improvements were observed in the lutein treated group. Additionally, lutein supplementation reversed the decreased protein expression of aortic heme oxygenase‐1 and increased the mRNA and protein expressions of aortic nicotinamide‐adenine dinucleotide phosphate oxidase stimulated by a HFD. Furthermore, the decreased mRNA and protein expression levels of hepatic peroxisome proliferator‐activated receptor‐α, carnitine palmitoyltransferase 1A, acyl CoA oxidase 1, low density lipoprotein receptors and scavenger receptor class B type I observed in mice with atherosclerosis were markedly enhanced after treatment with lutein. Taken together, these data add new evidence supporting the anti‐atherogenic properties of lutein and describing its mechanisms of action in atherosclerosis prevention, including oxidative stress and lipid metabolism improvements.  相似文献   
9.
NADPH cytochrome P450 oxidoreductase (CPR) catalyses the transfer of electrons during P450-mediated oxidation, which plays an important role in the omega-oxidation pathway of Candida tropicalis. Two putative allelic genes, CPR-a and CPR-b, were cloned from the long chain dicarboxylic acid-producing Candida tropicalis 1230, using cassette PCR methods. Both the identified open reading frames predict the gene products of 679 amino acid residues. The deduced amino acid sequences of CPR-a and CPR-b are highly homologous to CPR genes from C. tropicalis ATCC 750 and Candida maltosa. Both genes were individually expressed in a cpr mutant of Saccharomyces cerevisiae with high CPR activities, in which only a small distinction was observed between recombinant CPR-a and CPR-b. Both CPR-a and CPR-b contain one CTG codon, which codes for serine (amino acid 50) in C. tropicalis rather than universal leucine. A mutated cDNA of CPR-a with a TCG codon instead of CTG codon was constructed and expressed, resulting in little increase in CPR activity. This indicates that the alteration of Ser-50 has little effect on functional expression of CPR. Furthermore, high ketoconazole sensitivity for the cpr mutant was complemented by heterologous expression of the cloned CPR-a or CPR-b.  相似文献   
10.
Two anthocyanins (cyanidin-3-O-β-glucoside and peonidin-3-O-β-glucoside) and other phenolic (ferulic acid) were, respectively isolated from black and pigmented brown rices (Oryza sativa L. japonica) and their complete structures were determined by spectroscopic analyses (H NMR, C NMR and MALDI MASS). The HPLC profile of anthocyanins extracted from black rice showed cyanidin-3-O-β-glucoside as the first peak (85%) and peonidin 3-O-β-d-glucoside as the second (15%), while that of pigmented brown rice showed ferulic acid as the first peak (85.7%) and tocols as the second (14.3%). Several tocols were isolated and identified from the unsaponifiable fractions of both rices having some difference on their structures and amounts. The aldose reductase inhibitory activity of isolated compounds was in the following decreasing order: cyanidin-3-glucoside > quercetin > ferulic acid > peonidin-3-glucoside > tocopherol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号