首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10708篇
  免费   742篇
  国内免费   343篇
电工技术   227篇
综合类   665篇
化学工业   6506篇
金属工艺   370篇
机械仪表   239篇
建筑科学   246篇
矿业工程   206篇
能源动力   243篇
轻工业   1276篇
水利工程   33篇
石油天然气   392篇
武器工业   20篇
无线电   157篇
一般工业技术   906篇
冶金工业   203篇
原子能技术   63篇
自动化技术   41篇
  2024年   28篇
  2023年   121篇
  2022年   214篇
  2021年   304篇
  2020年   244篇
  2019年   242篇
  2018年   221篇
  2017年   389篇
  2016年   413篇
  2015年   349篇
  2014年   459篇
  2013年   570篇
  2012年   792篇
  2011年   796篇
  2010年   577篇
  2009年   558篇
  2008年   487篇
  2007年   640篇
  2006年   590篇
  2005年   517篇
  2004年   499篇
  2003年   391篇
  2002年   366篇
  2001年   318篇
  2000年   322篇
  1999年   277篇
  1998年   181篇
  1997年   161篇
  1996年   134篇
  1995年   131篇
  1994年   99篇
  1993年   76篇
  1992年   82篇
  1991年   51篇
  1990年   43篇
  1989年   23篇
  1988年   24篇
  1987年   22篇
  1986年   21篇
  1985年   12篇
  1984年   9篇
  1983年   8篇
  1982年   10篇
  1981年   9篇
  1980年   6篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(23):33223-33231
The effects of pH of the reaction solution and the concentration of phosphoric acid on the crystal growth behavior of LaPO4 crystallites were investigated and the mechanical properties of rare-earth phosphates were compared. As a result, the concentration of phosphoric acid of 10% was beneficial to the crystal growth of LaPO4 nanocrystalline. When the pH value of the reaction solution was 2, the size of LaPO4 crystallites increased gradually with the increasing reaction temperature, and the smallest crystallite size of 43.27 nm was obtained after heat-treatment at 1000 °C. Simultaneously, the activation energy for crystal growth of LaPO4 nanocrystalline was relatively lower (26.82 kJ mol−1). With the decreasing radii of rare-earth ions, the hardness, Young's modulus and fracture toughness of the bulk rare-earth phosphates exhibited a reduced tendency, resulted from the increase of porosity under the same preparation process.  相似文献   
2.
The conversion of food industry by-products to compounds with high added value is nowadays a significant topic, for social, environmental, and economic reasons. In this paper, calcium phosphate-based materials were obtained from black scabbardfish (Aphanopus carbo) bones and grey triggerfish (Balistes capriscus) skin, which are two of the most abundant fish by-products of Madeira Island. Different calcination temperatures between 400 and 1000°C were employed. Materials obtained from calcination of bones of black scabbard fish were composed by homogeneous mixtures of hydroxyapatite (Ca10(PO4)6(OH)2, HAp) and β-tricalcium phosphate (β-Ca3(PO4)2, β-TCP). Because of the high biocompatibility of HAp and the good resorbability of β-TCP, these natural biphasic materials could be very relevant in the field of biomaterials, as bone grafts. The ratio between HAp and β-TCP in the biphasic compound was dependent on the calcination temperature. Differently, the material obtained from skin of grey triggerfish contained HAp as the main phase, together with small amounts of other mineral phases, such as halite and rhenanite, which are known to enhance osteogenesis when used as bone substitutes. In both cases, the increase of calcination temperature led to an increase in the particles size with a consequent decrease in their specific surface area. These results demonstrate that from the fish by-products of the most consumed fishes in Madeira Island it is possible to obtain bioceramic materials with tunable composition and particle morphology, which could be promising materials for the biomedical field.  相似文献   
3.
《Ceramics International》2022,48(15):21502-21514
Based on the good osteogenic and angiogenic effects of silicon and magnesium elements, three types of micro-nano magnesium-containing silicates (MS), including akermanite (Ake, Ca2MgSi2O7), diopside (Dio, CaMgSi2O6) and forsterite (For, Mg2SiO4), were incorporated into calcium phosphate cement (CPC) to improve its osteogenic and angiogenic performances for clinical application. In this present work, the physicochemical properties, osteogenesis and angiogenesis of MS/CPCs (Ake/CPCs, Dio/CPCs and For/CPCs) were investigated systematically and comparatively. The results showed that all MS/CPCs had good biomineralization and significantly stimulated the osteogenic differentiation of mBMSCs and angiogenic differentiation of HUVECs, respectively. Besides, the stimulating effects were related to not only the category of MS, but also the content of MS. The For/CPCs had a good angiogenic property but their initial setting times were beyond 60 min. The Dio/CPCs showed the lowest biological performance among the three groups of MS/CPCs due to the lower ion release (Si and Mg). The Ake was the ideal modifier that could provide CPC with appropriate physicochemical properties, better osteogenesis and angiogenesis. Simultaneously, a higher addition (10 wt%) of akermanite resulted in the best potential to bone regeneration. Taken together, this research provides an effective approach to improve the overall performance of CPC, and 10Ake/CPC is of great promising prospect in bone repair.  相似文献   
4.
The bromodomain and extra terminal (BET) family of bromodomain-containing proteins (BCPs) have been the subject of extensive research over the past decade, resulting in a plethora of high-quality chemical probes for their tandem bromodomains. In turn, these chemical probes have helped reveal the profound biological role of the BET bromodomains and their role in disease, ultimately leading to a number of molecules in active clinical development. However, the BET subfamily represents just 8/61 of the known human bromodomains, and attention has now expanded to the biological role of the remaining 53 non-BET bromodomains. Rapid growth of this research area has been accompanied by a greater understanding of the requirements for an effective bromodomain chemical probe and has led to a number of new non-BET bromodomain chemical probes being developed. Advances since December 2015 are discussed, highlighting the strengths/caveats of each molecule, and the value they add toward validating the non-BET bromodomains as tractable therapeutic targets.  相似文献   
5.
A series of novel aliphatic poly(β‐thioether ester)s with various methylene group contents were prepared by direct lipase‐catalyzed polycondensation of the monomer with an acid‐labile β‐thiopropionate group. The polycondensation reaction using immobilized lipase B from Candida antarctica was carried out in diphenyl ether at 90 °C. Poly(β‐thioether ester)s with high molecular weights of 20 500–57 000 Da and narrow polydispersities in the range 1.40–1.48 were obtained. Thermogravimetric analysis, differential scanning calorimetry and wide‐angle X‐ray diffraction were used to investigate the thermal properties and crystal structures of these polyesters. All the poly(β‐thioether ester)s were semicrystalline polymers and thermally stable up to at least 200 °C. In vitro degradation studies showed that they can rapidly degrade under acidic conditions by the hydrolysis of the β‐thiopropionate groups, suggesting their potential as acid‐degradable polymeric materials. © 2019 Society of Chemical Industry  相似文献   
6.
Anti-washout and tissue adhesion properties are essential for the clinical application of injectable bone materials. In this study, we prepared calcium phosphate cement (CPC) with anti-washout and tissue adhesion properties and attempted to build covalent bonds between CPC and the amino groups in bone tissue under a self-regulating pH system in the CPC (acidic to basic). The results of push-out tests demonstrated that a significant enhancement (from 6.42 ± 0.76 N to 61.5 ± 4.09 N) in tissue adhesion was obtained with the addition of 6% (w/w) oxidized sodium alginate (OSA) in CPC. The FTIR, XRD, anti-washout test, XPS, pH test, and SEM results suggested that the synergistic effect of OSA-citric acid (CA) led to the formation of a three-dimensional gel network structure in the CPC, and the Schiff base reaction between aldehyde and amino groups induced adhesion between CPC and the bone tissue. Further, the addition of less OSA had no significant negative effect on the hydration properties of CPC. Our work aims to promote the development of injectable bone material in clinical applications.  相似文献   
7.
《Ceramics International》2022,48(24):36401-36409
Catalytic supercritical water oxidation (SCWO) of an organophosphate flame retardant, namely tri-n-butyl phosphate (TNBP) was studied. Firstly, copper oxide nanoparticles (NPs) were synthesized in SCW and their properties were characterized by various analyses. Afterwards, their catalytic performance was investigated under different conditions including reaction temperature (400–500 °C), TNBP volume percentage in the feed (1–4%), oxidant ratio (0–2) and reaction time (50–150 min) based on response surface methodology (RSM). The synthesized CuO NPs had an average particle size of 30 nm with a narrow distribution. According to RSM analysis, the reaction temperature and time are the most significant factors; whereas, the impact of the other factors, especially TNBP volume percentage in the feed, was found to be negligible. Overall, excellent performance was achieved under optimal conditions found by the RSM, which was reaction temperature of 500 °C, TNBP volume percentage of 4%, oxidant ratio of 1.5, and reaction time of 90 min. The TOC removal efficiency as an indicator of TNBP degradation was about 99%. Finally, in vitro cell viability assays for the cytotoxicity evaluation of fresh and SCW-treated solution were applied. The results of MTT showed that SCWO converts TNBP into by-product that did not induce any cytotoxicity.  相似文献   
8.
A renewable chemical, eugenol, is methacrylated to produce methacrylated eugenol (ME) employing the Steglich esterification reaction without any solvent. The resulting ME is used as a low‐viscosity co‐monomer to replace styrene in a commercial epoxy‐based vinyl ester resin (VE). The volatility and viscosity of ME and styrene are compared. The effect of ME loading and temperature on the viscosity of the VE–ME resin is investigated. Moreover, the thermomechanical properties, curing extent and thermal stability of the fully cured VE–ME thermosets are systematically examined. The results indicate that ME is a monomer with low volatility and low viscosity, and therefore the incorporation of ME monomer in VE resins allows significant reduction of viscosity. Moreover, the viscosity of the VE–ME resin can be tailored by adjusting the ME loadings and processing temperature to meet commercial liquid molding technology requirements. The glass transition temperatures of VE–ME thermosets range from 139 to 199 °C. In addition, more than 95% of the monomer is incorporated and fixed in the crosslinked network structure of VE–ME thermosets. Overall, the developed ME monomer exhibits promising potential for replacing styrene as an effective low‐viscosity co‐monomer. The VE–ME resins show great advantages for use in polymer matrices for high‐performance fiber‐reinforced composites. This work is of great significance to the vinyl ester industry by providing detailed experimental support. © 2018 Society of Chemical Industry  相似文献   
9.
A long fatty side chain was introduced into the macromolecule of hydroxyethyl cellulose (HEC) via esterification reaction. The hydrophobicity of hydroxyethyl cellulose lauric acid ester (HECLAE) was enhanced in comparison with HEC. The obtained HECLAE was used as macromolecular coupling agent in poly (butylene succinate)/wood flour composites and exhibited a positive influence on improving the mechanical performance of composites. Besides, HECLAE plays a role as a hydrophobic agent in composites. A significant increase in storage modulus (E’) was observed upon the incorporation of treated wood flour. SEM images showed that the dispersion of treated wood flour in PBS matrix was improved.  相似文献   
10.
添加剂对工业齿轮油性能影响的研究   总被引:3,自引:0,他引:3  
研究了硫化烯烃、磷酸酯胺盐、硫磷酸酯极压抗磨剂,含氮杂环衍生物多功能添加剂和防锈剂等,对工业齿轮油抗乳化性能、极压抗磨性能、防锈性能的影响;以及硫化烯烃、磷酸酯盐极压抗磨剂与含氮杂环衍生物多功能添加剂之间的协和效应。试验结果表明:1.2%~1.6%复合添加剂调制的CKD220工业齿轮油中,磷酸脂盐的正确选用可以提高齿轮油的抗乳化性能、防锈性能和减少防锈剂用量。硫化烯烃与磷酸脂盐、含氮杂环衍生物多功能添加剂的合理组合,可以提高齿轮油的极压抗磨性能和防锈性能,减少添加剂总加剂量。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号