首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27350篇
  免费   2898篇
  国内免费   1641篇
电工技术   1386篇
综合类   1917篇
化学工业   4474篇
金属工艺   2944篇
机械仪表   978篇
建筑科学   2369篇
矿业工程   1021篇
能源动力   2067篇
轻工业   640篇
水利工程   672篇
石油天然气   2128篇
武器工业   199篇
无线电   3869篇
一般工业技术   4166篇
冶金工业   999篇
原子能技术   317篇
自动化技术   1743篇
  2024年   117篇
  2023年   594篇
  2022年   710篇
  2021年   930篇
  2020年   993篇
  2019年   894篇
  2018年   787篇
  2017年   1008篇
  2016年   1039篇
  2015年   1021篇
  2014年   1515篇
  2013年   1715篇
  2012年   1934篇
  2011年   2100篇
  2010年   1529篇
  2009年   1546篇
  2008年   1440篇
  2007年   1726篇
  2006年   1638篇
  2005年   1343篇
  2004年   1175篇
  2003年   1058篇
  2002年   868篇
  2001年   782篇
  2000年   676篇
  1999年   517篇
  1998年   401篇
  1997年   358篇
  1996年   284篇
  1995年   252篇
  1994年   188篇
  1993年   193篇
  1992年   162篇
  1991年   87篇
  1990年   79篇
  1989年   67篇
  1988年   45篇
  1987年   23篇
  1986年   12篇
  1985年   11篇
  1984年   15篇
  1983年   10篇
  1982年   12篇
  1981年   8篇
  1980年   3篇
  1979年   7篇
  1978年   2篇
  1976年   3篇
  1959年   4篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   
2.
《Ceramics International》2022,48(16):23341-23347
In recent years, the rapid development of Li(NixCoyMn1-x-y)O2 (LNCM) materials for application in ternary lithium-ion batteries has led to an increased demand for refractory kiln saggars in industries. However, saggars used for firing ternary Li-ion battery cathode materials are often subjected to severe corrosion and spalling. To investigate the damage mechanism of the saggar materials, non-contact corrosion experiments were designed to study the effects of the precursor additions, calcination temperature, and number of calcinations during the interaction between mullite saggar and LNCM materials. The phase composition and microstructure of the mullite saggar specimens before and after corrosion were characterized using X-ray diffraction and scanning electron microscopy, respectively, to obtain a comprehensive understanding of the causes of the deterioration of mullite saggar materials during corrosion.  相似文献   
3.
4.
Micro-cracks commonly occur on the catalyst layers (CLs) during the manufacturing of catalyst coated membranes (CCMs). However, the crack shape parameters effect on CLs in-plane (IP) electronic conductivity λs is not clear. In this work, the relationship between crack parameters and the λs is obtained based on the two-dimensional (2D) multiple-relaxation time (MRT) lattice Boltzmann method (LBM). The LBM numerical model is validated by the normalized λs experiment applied on three different home-made cracked CLs, and the parameter study focus on crack width, length, quantity and phase angle are carried out. The results show that the decrease of λs has different sensitivity |k| to the parameters above. The crack width has little effect on λs decrease, and the |kw| is 0.038. However, crack arm length and quantity show more significant impact, which |kl| and |kN| are 0.753 and 0.725, respectively. The CLs with different crack propagation directions show significant anisotropy on λs, and a 53.53% decrease in λs is observed between 0° and 90° crack phase angle change. To manufacture a high electronic conductivity CL, crack initiation and migration mitigation are highly encouraged.  相似文献   
5.
《Ceramics International》2022,48(20):29892-29899
It is very challenging for 3D printing based on the selective laser melting (SLM) technology to obtain cermet bulk materials with high density and homogeneous microstructures. In this work, the SLM process of the cermet powders was studied by both simulations and experiments using the WC-Co cemented carbides as an example. The results indicated that the evolution of the ceramic and metallic phases in the cermet particle during the heating, melting and solidification processes were all significantly inhomogeneous from atomic scale to mesoscale microstructures. As a consequence, the microstructural defects were caused intrinsically in the printed bulk material. The formation and growth of the bonding necks between the particles were mainly completed at the later stage of laser heating and the early stage of solidification. Both simulations and experiments demonstrated that thin amorphous layers formed at the ceramics/metal interfaces. This work disclosed the mechanisms for the evolution from the atomic scale to microstructure during the SLM printing of cermet powders, and discovered the origin of the defects in the printed cermet bulk materials.  相似文献   
6.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   
7.
The low performance of open-cathode proton-exchange-membrane fuel cells (OCPEMFCs) is attributed to the low-humidity ambient air supplied to the cathode using electric fans. To improve the OCPEMFC performance, this paper proposes a novel humidification method by collecting water purged from the anode and supplying it to the open cathode. The OCPEMFC performance is evaluated at various humidifier distances from the cathode inlet, and it is compared with that where no humidifier is used when the OCPEMFC operates under three different current levels of 1, 5, and 8 A. The results show that the novel design improves the stack power, and optimal performance is achieved at a humidifier distance of 2 cm. The energy efficiency achieves an improvement between 1.4% and 1.8% when a humidifier is used.  相似文献   
8.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
9.
In this study, La was doped into the lithium layer of Li-rich cathode material and formed a layered-spinel hetero-structure. The morphology, crystal structure, element valence and kinetics of lithium ion migration were studied by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The La doped lithium-rich cathode material exhibited similar initial discharge capacity of 262.8 mAh g?1 at 0.1 C compared with the undoped material, but the discharge capacity retention rate can be obviously improved to 90% after 50 cycles at 1.0 C. Besides that, much better rate capability and Li+ diffusion coefficient were observed. The results revealed that La doping not only stabilized the material structure and reduced the Li/Ni mixing degree, but also induced the generation of spinel phase to provide three-dimensional diffusion channels for lithium ion migration. Moreover, the porous structure of the doped samples also contributed to the remarkable excellent electrochemical performance. All of these factors combined to significantly improve the electrochemical performance of the material.  相似文献   
10.
This work focuses on identifying the rate-determining step of oxygen transport through La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes with symmetric and asymmetric architectures. The best oxygen semipermeation fluxes are 3.4 10−3 mol. m-2.s-1 and 6.3 10−3 mol. m-2.s-1 at 900 °C for the symmetric membrane and asymmetric membrane with a modified surface. The asymmetric membrane with a modified surface leads to an increase of approximately 7 times the oxygen flux compared to that obtained with the La0.5Sr0.5Fe0.7Ga0.3O3-δ dense membrane without surface modification. This work also shows that the oxygen flux is mainly governed by gaseous oxygen diffusion through the porous support of asymmetric La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号