首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   18篇
  国内免费   3篇
综合类   8篇
化学工业   110篇
金属工艺   1篇
建筑科学   1篇
矿业工程   4篇
能源动力   8篇
轻工业   27篇
石油天然气   9篇
无线电   2篇
一般工业技术   9篇
原子能技术   1篇
自动化技术   2篇
  2024年   1篇
  2023年   6篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   7篇
  2018年   2篇
  2017年   5篇
  2016年   7篇
  2015年   5篇
  2014年   6篇
  2013年   8篇
  2012年   10篇
  2011年   7篇
  2010年   7篇
  2009年   6篇
  2008年   5篇
  2007年   11篇
  2006年   6篇
  2005年   2篇
  2004年   4篇
  2003年   10篇
  2002年   5篇
  2001年   9篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
排序方式: 共有182条查询结果,搜索用时 433 毫秒
1.
Abstract

Lignin biochar-catalytic depolymerization using biochar Fe-600, Fe-800, Ni-600, Ni-800 catalysts under microwave-heating (180?°C for 30?min) was explored in an ethanol/formic acid (1:1) media. Non-catalyst depolymerization was also studied and compared with the biochar-catalysts results. Characteristics of the bio-char catalysts were analyze by BET, XRD, and FT-IR. GPC, FT-IR, and MALDI-TOF MS spectrometry were also used to characterize the depolymerization products. The experimental results showed that the SBET, Vt, and Vmec and average pore diameter of the biochars are considerably dependent on the preparation temperature and type of cation (Ni2+ or Fe3+). The maximum yield of bio-oil product was obtained as 85?wt% with the addition of biochar Ni-600 and the total amount of oligomers or monomers with a molecular weight of 164 to 446 reaches 80.4%.  相似文献   
2.
以钠硼解石天然矿粉为原料,经水热解聚和相转化制备出硼酸钙产品。通过化学分析、XRD及TG—DTG分析表明:产品中的物相主要是白硼钙石(4CaO·5B2O3-7H2O)、硬硼钙石(2CaO·3B2O3·5H2O)和羟硼钙石(3CaO·2B2O3·9H2O)。实验确定了适宜的工艺条件,即:反应体系液固体积质量比为2.5mL/g左右;解聚温度120℃;解聚时间8h左右;干燥温度在200℃左右。在此工艺条件下制得的硼酸钙产品的氧化钠质量分数在0.5%以下,很好地满足了无碱玻璃纤维工业对含硼原料的要求。  相似文献   
3.
Depolymerization of the biopolymer chitosan by an autoclaving process at 121°C and 15 psi was investigated using various treatments. Acetic acid was found to be the most effective solvent in decreasing chitosan viscosity among the six organic acids tested. The rate of viscosity decrease increased with increasing chitosan concentration. The viscosity of 1% chitosan in 1% acetic acid decreased rapidly to 91% of the initial viscosity following the initial 15 min of autoclaving. This decreased gradually to 93% and 94% in 30 and 60 min, respectively, without being adversely affected by the chitosan solution volume. The degree of deacetylation was comparable before and after autoclaving for 60 min. Chitosan at three molecular weights (Mr = 1597, 1110, and 789 kDa) decreased in molecular weight by 46%–51% in the 15‐min treatment, 55%–60% in the 30‐min treatment, and 60%–62% in the 60‐min treatment. The addition of 0.1%–1.0% (v/v) concentrations of hydrogen peroxide to the chitosan solution autoclaved for 15 min decreased viscosity by 94%–98% and molecular weight by 69%–83%. This process is a simple, timesaving, homogeneous depolymerization procedure, and it is possible to prepare partially hydrolyzed chitosan with specified molecular weights by regulating the time of treatment. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1890–1894, 2003  相似文献   
4.
An increase in the depolymerization of chitosan was found with an increased concentration of sodium perborate. Acetic anhydride was added to reacetylated chitosan in a molar ratio per gulcosamine unit, and the amide I band of IR spectra changed with the addition of acetic anhydride. Sixteen chitosans with various molecular weights (MWs) and degrees of deacetylation (DODs) were prepared. X‐ray diffraction patterns indicated their amorphous and partially crystalline states. Increases in the chitosan MW and DOD increased the tensile strength (TS). TS of the chitosan films ranged from 22 to 61 MPa. However, the elongation (E) of chitosan films did not show any difference with MW. TS of chitosan films decreased with the reacetylation process. However, E of chitosan films was not dependent on DOD. The water vapor permeabilities (WVPs) of the chitosan films without a plasticizer were between 0.155 and 0.214 ng m/m2 s Pa. As the chitosan MW increased, the chitosan film WVP increased, but the values were not significantly different. Moreover, the WVP values were not different from low DOD to high DOD. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3476–3484, 2003  相似文献   
5.
Osmotic dehydration assisted by ultrasound (ODAU) at low temperatures reduces water activity (aw) and maintains nutrients. The influence of solution concentration (SC; 20 to 60° Brix, xylitol and sorbitol) and ultrasound application time (tus, 0 to 40 min) in ODAU of yacon was studied with the aid of a response surface method. The optimum condition with respect to mass transfer parameters, aw, and fructan retention was SC of 60° Brix for both solutions and tus of 2.67 min for xylitol samples and 0 min for sorbitol samples. The application of ultrasound improved dehydration but resulted in depolymerization of fructans.  相似文献   
6.
7.
麝香-T具有甜而优雅的麝香香韵及类似于天然麝香的结构,广泛用于调配各种高级日化产品。抚顺石油化工研究院在成功开发了系列FY-13复合催化剂、研究了工程放大规律、解决了过程自控问题并优化了工艺条件后,实现了麝香-T的工业化生产。开发成功的合成技术在50t/a的工业化装置上连续运转的结果表明,装置运转平稳,数据重复性好,产品收率及质量稳定,总平均收率达到了87.1%,具有良好的推广应用前景。  相似文献   
8.
Depolymerization of poly(ethylene terephthalate) waste (PETW) was carried out by methanolysis using zinc acetate in the presence of lead acetate as the catalyst at 120–140 °C in a closed batch reactor. The particle size ranging from 50 to 512.5 µm and the reaction time 60 to 150 min required for methanolysis of PETW were optimized. Optimal percentage conversion of PETW into dimethyl terephthalate (DMT) and ethylene glycol (EG) was 97.8% (at 120 °C) and 100% (at 130 and 140 °C) for the optimal reaction time of 120 min. Yields of DMT and EG were almost equal to PET conversion. EG and DMT were analyzed qualitatively and quantitatively. To avoid oxidation/carbonization during the reaction, methanolysis reactions were carried out below 150 °C. A kinetic model is developed and the experimental data show good agreement with the kinetic model. Rate constants, equilibrium constant, Gibbs free energy, enthalpy and entropy of reaction are also evaluated at 120, 130 and 140 °C. The methanolysis rate constant of the reaction at 140 °C (10.3 atm) was 1.4 × 10?3 g PET mol?1 min?1. The activation energy and the frequency factor for methanolysis of PETW were 95.31 kJ mol?1 and 107.1 g PET mol?1 min?1, respectively. © 2003 Society of Chemical Industry  相似文献   
9.
木质纤维素解聚平台分子催化合成航油技术的进展   总被引:1,自引:0,他引:1       下载免费PDF全文
航油作为一种重要的空中交通燃料,它的不可替代性和航空业碳减排的压力,迫使航空业对生物航油的需求不断加大。由于油脂原料的局限性,使得未来生物航油的原料将趋向多元化发展,逐渐延伸到糖、木质纤维素等原料。木质纤维素类生物质具有储量丰富、廉价易得的优势,以木质纤维素为原料制备航油的技术近年来得到了大力发展。然而木质纤维素组分中的碳链结构与航油分子的碳链结构不匹配,所以木质纤维素制备航油的技术关键在于如何以中间分子,如CO和H2小分子的费托合成路线以及糠醛、乙酰丙酸等木质纤维素解聚平台分子的合成路线,通过合适的催化反应合成长链正/异构烷烃(C8~C16)。由于木质纤维素解聚平台分子保留了原料组分中的碳骨架以及多种功能官能团,比较容易通过合成方法来调控燃料的品质和特性,所以近年来有关木质纤维素解聚平台分子催化合成航油的技术途径及其催化工艺的报道不断涌现。为了充分认识此类航油技术的发展潜力,本文以糠醛、乙酰丙酸、多元醇等几种重要平台分子的碳链构建方式为线索总结了合成航油的各种技术途径和相应的催化工艺。并结合作者的研究工作,从技术应用性和化工过程实现的角度分析了各种技术途径的优缺点以及所面临的共性难题,同时对未来生物航油技术的发展进行了初步展望。  相似文献   
10.
Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号