首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7586篇
  免费   655篇
  国内免费   22篇
电工技术   3篇
综合类   254篇
化学工业   1075篇
金属工艺   4篇
机械仪表   28篇
建筑科学   11篇
矿业工程   1篇
能源动力   56篇
轻工业   6611篇
水利工程   5篇
石油天然气   61篇
无线电   14篇
一般工业技术   91篇
冶金工业   13篇
原子能技术   1篇
自动化技术   35篇
  2024年   75篇
  2023年   163篇
  2022年   311篇
  2021年   392篇
  2020年   300篇
  2019年   324篇
  2018年   277篇
  2017年   261篇
  2016年   214篇
  2015年   287篇
  2014年   306篇
  2013年   362篇
  2012年   517篇
  2011年   496篇
  2010年   352篇
  2009年   305篇
  2008年   301篇
  2007年   467篇
  2006年   484篇
  2005年   387篇
  2004年   337篇
  2003年   236篇
  2002年   214篇
  2001年   146篇
  2000年   112篇
  1999年   113篇
  1998年   104篇
  1997年   73篇
  1996年   62篇
  1995年   44篇
  1994年   46篇
  1993年   42篇
  1992年   55篇
  1991年   31篇
  1990年   25篇
  1989年   5篇
  1988年   4篇
  1987年   8篇
  1986年   1篇
  1985年   4篇
  1984年   5篇
  1982年   1篇
  1980年   11篇
  1979年   2篇
  1978年   1篇
排序方式: 共有8263条查询结果,搜索用时 31 毫秒
1.
The purpose of this study was to increase the water solubility and potential bioavailability of quercetin by encapsulation in whey protein isolate (WPI) based on a green, efficient pH-driven method. According to the results, the water solubility of quercetin increased by 346.9: times after loading into WPI nanoparticles. When the initial quercetin concentration was 0.25 mg mL−1 and WPI was 2% w/v, the encapsulation efficiency reached 94.1%, the Z-average diameter was 36.63 nm, and the zeta potential was −36.4 mV at pH 7.0. The fluorescence spectroscopy assay suggested the molecular complexation of quercetin and WPI at pH 12.0. X-ray diffraction assay indicated the enclosure of amorphous quercetin in WPI. Correspondingly, the bioaccessibility increased from 2.76% to 31.23% and the Caco-2 cell monolayer uptake increased from 0% to 2.12% after nanoencapsulation. This work confirmed that the pH-driven method is an effective approach to prepare WPI–quercetin nanocapsules to improve physical and potentially biological properties of quercetin.  相似文献   
2.
Soybean oil hydrogenation alters the linolenic acid molecule to prevent the oil from becoming rancid, however, health reports have indicated trans-fat caused by hydrogenation, is not generally regarded as safe. Typical soybeans contain approximately 80 g kg−1 to 120 g kg−1 linolenic acid and 240 g kg−1 of oleic acid. In an effort to accommodate the need for high-quality oil, the United Soybean Board introduced an industry standard for a high oleic acid greater than 750 g kg−1 and linolenic acid less than 30 g kg−1 oil. By combing mutations in the soybean plant at four loci, FAD2-1A and FAD2-1B, oleate desaturase genes and FAD3A and FAD3C, linoleate desaturase genes, and seed oil will not require hydrogenation to prevent oxidation and produce high-quality oil. In 2017 and 2018, a study comparing four near-isogenic lines across multiple Tennessee locations was performed to identify agronomic traits associated with mutations in FAD3A and FAD3C loci, while holding FAD2-1A and FAD2-1B constant in the mutant (high oleic) state. Soybean lines were assessed for yield and oil quality based on mutations at FAD2-1 and FAD3 loci. Variations of wild-type and mutant genotypes were compared at FAD3A and FAD3C loci. Analysis using a generalized linear mixed model in SAS 9.4, indicated no yield drag or other negative agronomic traits associated with the high oleic and low linolenic acid genotype. All four mutations of fad2-1A, fad2-1B, fad3A, and fad3C were determined as necessary to produce a soybean with the new industry standard (>750 g kg−1 oleic and <30 g kg−1 linolenic acid) in a maturity group-IV-Late cultivar for Tennessee growers.  相似文献   
3.
4.
5.
6.
Limonene‐derived polycarbonate‐based alkyd resins (ARs) have been prepared by copolymerization of limonene dioxide with CO2, catalysed by a β‐diiminate zinc–bis(trimethylsilyl)amido complex, and subsequent chemical modification with soybean oil fatty acids using triphenylethylphosphonium bromide as the catalyst. This quantitative partial modification was realized via epoxy–carboxylic acid chemistry, affording ARs with higher oil lengths, lower polydispersities and higher glass transition temperatures (Tg) in comparison to a conventional polyester AR based on phthalic acid, multifunctional polyol pentaerythritol and soybean fatty acid. The novel limonene polycarbonate AR and the conventional polyester AR were evaluated as coatings and both the physical drying (without the presence of the oxidative drying accelerator Borchi® Oxy Coat) and chemical curing (with Borchi® Oxy Coat) processes of these coatings were monitored by measuring the König hardness and complex modulus development with time. A better performance was obtained for the alkyd paint containing polycarbonates modified with fatty acids (FA‐PCs), which showed a faster chemical drying, a higher König hardness and a higher Tg in coating evaluation, demonstrating that the fully renewable FA‐PCs are promising resins for alkyd paint applications. © 2019 Society of Chemical Industry  相似文献   
7.
The high cost and potential toxicity of biodegradable polymers like poly(lactic‐co‐glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate–modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α‐lactalbumin (α‐L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim–Andersen–de Boer model indicated that native waxy corn had significantly (P < 0.05) higher water monolayer capacity followed by 3%‐OSA‐modified DWxCn, WPI, 3%‐OSA‐modified DWxRc, α‐L, and native phytoglycogen. WPC had significantly lower water monolayer capacity. All Tg values matched with the solid‐like appearance of the biopolymers. Native polysaccharides and whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%‐OSA modification had a “melted” appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA‐modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications.  相似文献   
8.
A diverse range of genetic elements has been used to develop genetically modified organisms (GMOs) over the last 18 years. Screening methods that target few elements, such as the Cauliflower Mosaic Virus 35S promoter (P-35S) and Agrobacterium tumefaciens nopaline terminator (T-nos), are not sufficient to screen GMOs. In the present study, a multiplex PCR system for all globally commercialized GM soybean events was developed to easily trace the events. For this purpose, screening elements of 24 GM soybean events were investigated and 9 screening targets were selected and divided into three individual triplex PCR systems: P-35S, ribulose-1,5-bisphosphate carboxylase small subunit promoter of Arabidopsis thaliana, T-nos, T-35S, pea E9 terminator, open reading frame 23 terminator of A. tumefaciens, proteinase inhibitor II terminator of potato, acetohydroxy acid synthase large subunit terminator of A. thaliana, and the revealed 3′ flanking sequences of DP-305423-1. The specificity of the assays was confirmed using thirteen GM soybean events as the respective positive/negative controls. The limit of detection of each multiplex set, as determined using certified reference materials of specific GM events, ranged from 0.03 to 0.5%, depending upon target. Furthermore, 26 food samples that contained soybean ingredients, which were purchased from the USA, China, Japan, and Korea, were analyzed, 17 of which contained one or more GM soybean events. These results suggest that the developed screening method can be used to efficiently track and identify 24 GM soybean events in food and feed.  相似文献   
9.
10.
The effectiveness of methanolic and n-hexane crude extracts of Amaranthus spinosus to inhibit the spore germination of Phakopsora pachyrhizi, a causal agent of soybean rust disease was studied. Both methanolic and n-hexane crude extracts inhibited spore germination at concentrations of 0.1% to 5.0%. Methanolic extract of the roots at a concentration of 2.5% inhibited 55% of spore germination, and this result was similar when higher concentration at 5% of methanolic and n-hexane extracts of the flowers was used. The presence of alkaloids, flavonoids, tannins, saponins, and terpenoids in the extract may be responsible for the inhibition. The extract was potential to be utilized as a botanical fungicide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号