首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17502篇
  免费   1777篇
  国内免费   649篇
电工技术   248篇
技术理论   2篇
综合类   1271篇
化学工业   3312篇
金属工艺   263篇
机械仪表   390篇
建筑科学   513篇
矿业工程   142篇
能源动力   555篇
轻工业   8290篇
水利工程   165篇
石油天然气   187篇
武器工业   84篇
无线电   784篇
一般工业技术   1520篇
冶金工业   303篇
原子能技术   76篇
自动化技术   1823篇
  2024年   151篇
  2023年   523篇
  2022年   788篇
  2021年   1001篇
  2020年   870篇
  2019年   798篇
  2018年   680篇
  2017年   695篇
  2016年   707篇
  2015年   747篇
  2014年   946篇
  2013年   1047篇
  2012年   1202篇
  2011年   1260篇
  2010年   806篇
  2009年   780篇
  2008年   725篇
  2007年   987篇
  2006年   820篇
  2005年   746篇
  2004年   615篇
  2003年   571篇
  2002年   415篇
  2001年   320篇
  2000年   302篇
  1999年   270篇
  1998年   187篇
  1997年   134篇
  1996年   140篇
  1995年   127篇
  1994年   102篇
  1993年   86篇
  1992年   82篇
  1991年   44篇
  1990年   44篇
  1989年   28篇
  1988年   37篇
  1987年   20篇
  1986年   16篇
  1985年   15篇
  1984年   12篇
  1983年   10篇
  1982年   13篇
  1981年   8篇
  1980年   11篇
  1979年   9篇
  1963年   3篇
  1961年   4篇
  1959年   3篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Electrocatalytic nitrogen reduction reaction (ENRR) offers a carbon-neutral process to fix nitrogen into ammonia, but its feasibility depends on the development of highly efficient electrocatalysts. Herein, we report that Fe ion grafted on MoO3 nanorods synthesized by an impregnation technique can efficiently enhance the electron harvesting ability and the selectivity of H+ during the NRR process in neutral electrolyte. In 0.1 M Na2SO4 solution, the electrocatalyst exhibited a remarkable NRR activity with an NH3 yield of 9.66 μg h?1 mg?1cat and a Faradaic efficiency (FE) of 13.1%, far outperforming the ungrafted MnO3. Density functional theory calculations revealed that the Fe sites are major activation centers along the alternating pathway.  相似文献   
2.
Gelatin is one of the most important multifunctional biopolymers and is widely used as an essential ingredient in food, pharmaceutical, and cosmetics. Porcine gelatin is regarded as the leading source of gelatin globally then followed by bovine gelatin. Porcine sources are favored over other sources since they are less expensive. However, porcine gelatin is religiously prohibited to be consumed by Muslims and the Jewish community. It is predicted that the global demand for gelatin will increase significantly in the future. Therefore, a sustainable source of gelatin with efficient production and free of disease transmission must be developed. The highest quality of Bovidae-based gelatin (BG) was acquired through alkaline pretreatment, which displayed excellent physicochemical and rheological properties. The utilization of mammalian- and plant-based enzyme significantly increased the gelatin yield. The emulsifying and foaming properties of BG also showed good stability when incorporated into food and pharmaceutical products. Manipulation of extraction conditions has enabled the development of custom-made gelatin with desired properties. This review highlighted the various modifications of extraction and processing methods to improve the physicochemical and functional properties of Bovidae-based gelatin. An in-depth analysis of the crucial stage of collagen breakdown is also discussed, which involved acid, alkaline, and enzyme pretreatment, respectively. In addition, the unique characteristics and primary qualities of BG including protein content, amphoteric property, gel strength, emulsifying and viscosity properties, and foaming ability were presented. Finally, the applications and prospects of BG as the preferred gelatin source globally were outlined.  相似文献   
3.
4.
To satisfy arising energy needs and to handle the forthcoming worldwide climate transformation, the major research attention has been drawn to environmentally friendly, renewable and abundant energy resources. Hydrogen plays an ideal and significant role is such resources, due to its non-carbon based energy and production through clean energy. In this work, we have explored catalytic activity of a newly predicted haeckelite boron nitride quantum dot (haeck-BNQD), constructed from the infinite BN sheet, for its utilization in hydrogen production. Density functional theory calculations are employed to investigate geometry optimization, electronic and adsorption mechanism of haeck-BNQD using Gaussian16 package, employing the hybrid B3LYP and wB97XD functionals, along with 6–31G(d,p) basis set. A number of physical quantities such as HOMO/LUMO energies, density of states, hydrogen atom adsorption energies, Mulliken populations, Gibbs free energy, work functions, overpotentials, etc., have been computed and analysed in the context of the catalytic performance of haeck-BNQD for the hydrogen-evolution reaction (HER). Based on our calculations, we predict that the best catalytic performance will be obtained for H adsorption on top of the squares or the octagons of haeck-BNQD. We hope that our prediction of most active catalytic sites on haeck-BNQD for HER will be put to test in future experiments.  相似文献   
5.
In the present work, the bonding length, electronic structure, stability, and dehydrogenation properties of the Perovskite-type ZrNiH3 hydride, under different uniaxial/biaxial strains are investigated through ab-initio calculations based on the plane-wave pseudo-potential (PW-PP) approach. The findings reveal that the uniaxial/biaxial compressive and tensile strains are responsible for the structural deformation of the ZrNiH3 crystal structure, and its lattice deformation becomes more significant with decreasing or increasing the strain magnitude. Due to the strain energy contribution, the uniaxial/biaxial strain not only lowers the stability of ZrNiH3 but also decreases considerably the dehydrogenation enthalpy and decomposition temperature. Precisely, the formation enthalpy and decomposition temperature are reduced from ?67.73 kJ/mol.H2 and 521 K for non-strained ZrNiH3 up to ?33.73 kJ/mol.H2 and 259.5 K under maximal biaxial compression strain of ε = ?6%, and to ?50.99 kJ/mol.H2 and 392.23 K for the maximal biaxial tensile strain of ε = +6%. The same phenomenon has been also observed for the uniaxial strain, where the formation enthalpy and decomposition temperature are both decreased to ?39.36 kJ/mol.H2 and 302.78 K for a maximal uniaxial compressive strain of ε = - 12%, and to ?51.86 kJ/mol.H2 and 399 K under the maximal uniaxial tensile strain of ε = +12%. Moreover, the densities of states analysis suggests that the strain-induced variation in the dehydrogenation and structural properties of ZrNiH3 are strongly related to the Fermi level value of total densities of states. These ab-initio calculations demonstrate insightful novel approach into the development of Zr-based intermetallic hydrides for hydrogen storage practical applications.  相似文献   
6.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
7.
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth.  相似文献   
8.
In this study, amaranth flour was used as an ingredient to prepare gluten-free cookies. The production process and attributes of amaranth cookies were characterised, and the potential use of amaranth flour as a functional ingredient was analysed. Cookies exhibited a non-uniform reddish brown colour and a cookie factor ratio of 4.5 ± 0.6. Storage studies indicated that after 3 weeks at room temperature cookies presented slight variations in the texture. Simulated gastrointestinal digestion of this product was able to release peptides capable of exerting potential antithrombotic and antihypertensive activities, IC50 values of 0.22 ± 0.04 and 0.23 ± 0.03 mg mL−1 protein, respectively. This work demonstrates for the first time that food made with amaranth flour exerts potential antithrombotic and antihypertensive activity. In conclusion, these amaranth cookies could be an alternative way of incorporating potentially health beneficial products for people who choose a conscious diet, including coeliac or vegan consumers.  相似文献   
9.
10.
Malondialdehyde (MDA) was selected to represent a secondary by-product of lipid peroxidation during rice ageing. This study aimed to investigate the effects of MDA modification on the structural characteristics of rice protein. The results showed that as MDA concentration increased, rice protein carbonyl and disulphide groups increased, but sulphydryl content decreased. The blue shift of maximum fluorescence peak, the decrease of rice protein intrinsic fluorescence intensity and the reduction of surface hydrophobicity indicated the formation of protein aggregates caused by MDA oxidative modification. The results of molecular weight distribution and particle size distribution showed that MDA modification resulted in the formation of soluble protein aggregates, and the decrease of rice protein solubility indicated that insoluble protein aggregates were formed. Results of protein electrophoresis showed that MDA modification contributed to rice protein aggregation via non-disulphide covalent bonds. The results showed that rice protein gradually aggregated with increasing MDA concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号