首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   869篇
  免费   96篇
  国内免费   5篇
综合类   17篇
化学工业   127篇
金属工艺   1篇
机械仪表   11篇
建筑科学   1篇
能源动力   3篇
轻工业   713篇
水利工程   8篇
石油天然气   2篇
无线电   5篇
一般工业技术   16篇
原子能技术   4篇
自动化技术   62篇
  2024年   7篇
  2023年   13篇
  2022年   20篇
  2021年   49篇
  2020年   32篇
  2019年   26篇
  2018年   30篇
  2017年   31篇
  2016年   36篇
  2015年   35篇
  2014年   41篇
  2013年   52篇
  2012年   60篇
  2011年   56篇
  2010年   42篇
  2009年   41篇
  2008年   42篇
  2007年   45篇
  2006年   72篇
  2005年   45篇
  2004年   21篇
  2003年   25篇
  2002年   28篇
  2001年   18篇
  2000年   26篇
  1999年   10篇
  1998年   9篇
  1997年   6篇
  1996年   4篇
  1995年   6篇
  1994年   6篇
  1993年   2篇
  1992年   10篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   1篇
  1983年   1篇
  1981年   2篇
排序方式: 共有970条查询结果,搜索用时 703 毫秒
1.
2.
番茄是人们喜爱的一种蔬菜,品质的优劣决定于安全高效的栽培技术,文章从番茄对环境条件的要求、栽培类型、栽培季节、栽培技术的要求阐述番茄安全高效设施栽培技术。  相似文献   
3.
随着人民生活水平的提高,旱地西红柿种植面积逐年增大,但由于种植技术的缺乏,产量和质量均得不到提高。文章通过多年的研究,对西红柿从育苗、施肥、覆膜种植到管理进行了系统的阐述,有效提高山区人民旱地西红柿的种植水平,增加农民收入。  相似文献   
4.
S. Min    S.K. Min    Q.H. Zhang 《Journal of food science》2003,68(6):1995-2001
ABSTRACT: Pulsed electric field (PEF) inactivation models for tomato juice lipoxygenase (LOX) were studied. Tomato juice was treated by PEF with the combinations of electric field strength (0, 10, 15, 20, 30, 35 kV/cm), PEF treatment time (20, 30, 50, 60, 70 μs), and PEF treatment temperature (10, 20, 30, 40, 50 °C). The first-order inactivation models, Hulsheger's model, Fermi's model, and the 2nd-order polynomial equation adequately described the LOX inactivation. Calculated D values were 161.0, 112.9, 101.0, and 74.8 μs at 15, 20, 30, and 35 kV/cm, respectively, at 30 °C. The activation energy for the inactivation of LOX by PEF was 35.7 kJ/mol. Applied electric field strength was the primary variable for the inactivation of LOX.  相似文献   
5.
The characteristics of high-quality tomato pulp (commercial def.: crushed or diced tomatoes with about 30% tomato juice as packing medium) canned with tomato juice pulp enriched by ultrafiltration as packing medium were compared with those covered with conventional vacuum-concentrated juice.
Both hot- and cold-break products were prepared and those containing 20% serum-reduced packing juice proved to be the best, showing no signs of syneresis on storage and with improvements in sensory properties, colour and non-enzymatic browning; some volatile components were reduced.  相似文献   
6.
通过对早疫病病害番茄苗、灰霉病病害番茄苗、机械损伤番茄苗和对照番茄苗的电子鼻响应信号的对比,可以看出不同处理的番茄苗样本电子鼻的响应信号是不同的,表明用电子鼻响应信号对番茄苗不同种类损伤进行预测是可行的.从PCA结果来看,早疫病病害的番茄苗和灰霉病病害的番茄苗能很好区分开,机械损伤的番茄苗和正常处理的番茄苗产生了重叠现...  相似文献   
7.
Tomato is one of the major vegetable crops consumed worldwide. Tomato yellow leaf curl virus (TYLCV) and fungal Oidium sp. are devastating pathogens causing yellow leaf curl disease and powdery mildew. Such viral and fungal pathogens reduce tomato crop yields and cause substantial economic losses every year. Several commercial tomato varieties include Ty-5 (SlPelo) and Mildew resistance locus o 1 (SlMlo1) locus that carries the susceptibility (S-gene) factors for TYLCV and powdery mildew, respectively. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) is a valuable genome editing tool to develop disease-resistant crop varieties. In this regard, targeting susceptibility factors encoded by the host plant genome instead of the viral genome is a promising approach to achieve pathogen resistance without the need for stable inheritance of CRISPR components. In this study, the CRISPR/Cas9 system was employed to target the SlPelo and SlMlo1 for trait introgression in elite tomato cultivar BN-86 to confer host-mediated immunity against pathogens. SlPelo-knockout lines were successfully generated, carrying the biallelic indel mutations. The pathogen resistance assays in SlPelo mutant lines confirmed the suppressed accumulation of TYLCV and restricted the spread to non-inoculated plant parts. Generated knockout lines for the SlMlo1 showed complete resistance to powdery mildew fungus. Overall, our results demonstrate the efficiency of the CRISPR/Cas9 system to introduce targeted mutagenesis for the rapid development of pathogen-resistant varieties in tomato.  相似文献   
8.
Auxin response factors (ARFs) play important roles in various plant physiological processes; however, knowledge of the exact role of ARFs in plant responses to water deficit is limited. In this study, SlARF4, a member of the ARF family, was functionally characterized under water deficit. Real-time fluorescence quantitative polymerase chain reaction (PCR) and β-glucuronidase (GUS) staining showed that water deficit and abscisic acid (ABA) treatment reduced the expression of SlARF4. SlARF4 was expressed in the vascular bundles and guard cells of tomato stomata. Loss of function of SlARF4 (arf4) by using Clustered Regularly Interspaced Short Palindromic Repeats/Cas 9 (CRISPR/Cas 9) technology enhanced plant resistance to water stress and rehydration ability. The arf4 mutant plants exhibited curly leaves and a thick stem. Malondialdehyde content was significantly lower in arf4 mutants than in wildtype plants under water stress; furthermore, arf4 mutants showed higher content of antioxidant substances, superoxide dismutase, actual photochemical efficiency of photosystem II (PSII), and catalase activities. Stomatal and vascular bundle morphology was changed in arf4 mutants. We identified 628 differentially expressed genes specifically expressed under water deficit in arf4 mutants; six of these genes, including ABA signaling pathway-related genes, were differentially expressed between the wildtype and arf4 mutants under water deficit and unlimited water supply. Auxin responsive element (AuxRE) elements were found in these genes’ promoters indicating that SlARF4 participates in ABA signaling pathways by regulating the expression of SlABI5/ABF and SCL3, thereby influencing stomatal morphology and vascular bundle development and ultimately improving plant resistance to water deficit.  相似文献   
9.
The jasmonate (JA) and salicylate (SA) signaling pathways in plants provide resistance to herbivorous insects and pathogens. It is known that these pathways interact, sometimes resulting in antagonism between the pathways. We tested how the timing and concentration of elicitation of each pathway influenced the interaction between the jasmonate and salicylate pathways measured in terms of five biochemical responses and biological resistance to caterpillars and bacteria. The salicylate pathway had a stronger effect on the jasmonate pathway than did the reverse. The negative signal interaction was generated by two distinct paths in the plant. A negative interaction in the biochemical expression of the two pathways was most consistent in the simultaneous elicitation experiments compared to when the elicitors were temporally separated by two days. Herbivore bioassays with Spodoptera exigua also consistently reflected an interaction between the two pathways in the simultaneous elicitation experiments. The negative signal interaction reducing biological resistance to the herbivore was also demonstrated in some temporally separated treatment combinations where attenuation of the biochemical response was not evident. Concentration of the elicitors had an effect on the pathway interaction with consistent biochemical and biological antagonism in the high concentration experiments and inconsistent antagonism in the low concentration experiments. The bacterial pathogen, Pseudomonas syringae pv. tomato (Pst), consistently showed reduced lesion development on plants with SA responses activated and, in some experiments, on JA-elicited plants. Resistance to Pst was not reduced or enhanced in dual-elicited plants. Thus, signal interaction is most consistent when elicitors are applied at the same time or when applied at high doses. Signal interaction affected the herbivore S. exigua, but not the pathogen Pst.  相似文献   
10.
Five candidate pheromone components were identified by analyzing pheromone gland extracts by gas chromatography (GC), coupled GC-electroantennographic detection (EAD), and coupled GC-mass spectrometry (MS): (E)-11-hexadecenol(E11–16 : OH), (Z)-11-hexadecenol (Z11–16 : OH),(E)-11-hexadecenal, (E)-11-hexadecenyl acetate, and (Z)-3,(Z)-6,(Z)-9-tricosatriene (Z3,Z6,Z9–23 : Hy). In electroantennogram (EAG) recordings, synthetic E11–16 : OH elicited stronger antennal responses at low doses than other candidate pheromone components. Field tests demonstrated that synthetic E11–16 : OH as a trap bait was effective in attracting males, whereas addition of Z11–16 : OH inhibited the males' response. Z3,Z6,Z9–23 : Hy strongly enhanced attractiveness of E11–16 : OH, but was not attractive by itself. A pheromone blend with synergistic behavioral activity of an alcohol (E11–16 : OH) and hydrocarbon (Z3,Z6,Z9–23 : Hy) component is most unusual in the Lepidoptera. The synthetic two-component pheromone is approximately 60 times more attractive than the female-produced blend and might facilitate the control of this pest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号