首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10461篇
  免费   1010篇
  国内免费   400篇
电工技术   2014篇
技术理论   1篇
综合类   716篇
化学工业   1403篇
金属工艺   216篇
机械仪表   408篇
建筑科学   820篇
矿业工程   327篇
能源动力   531篇
轻工业   941篇
水利工程   1417篇
石油天然气   683篇
武器工业   40篇
无线电   441篇
一般工业技术   432篇
冶金工业   625篇
原子能技术   63篇
自动化技术   793篇
  2024年   71篇
  2023年   242篇
  2022年   404篇
  2021年   538篇
  2020年   385篇
  2019年   331篇
  2018年   292篇
  2017年   345篇
  2016年   365篇
  2015年   357篇
  2014年   605篇
  2013年   560篇
  2012年   655篇
  2011年   752篇
  2010年   572篇
  2009年   571篇
  2008年   482篇
  2007年   631篇
  2006年   584篇
  2005年   490篇
  2004年   430篇
  2003年   367篇
  2002年   316篇
  2001年   305篇
  2000年   214篇
  1999年   196篇
  1998年   148篇
  1997年   127篇
  1996年   106篇
  1995年   98篇
  1994年   88篇
  1993年   53篇
  1992年   42篇
  1991年   31篇
  1990年   32篇
  1989年   31篇
  1988年   16篇
  1987年   11篇
  1986年   2篇
  1985年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   6篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1966年   1篇
  1958年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The effective and efficient utilization of low-calorific value (LCV) gases has gained increasing attention in scientific research and industrial fields. In this study, the combustion characteristics of three LCV gases in practical devices are analyzed by using a nonadiabatic perfectly stirred reactor model. The complete steady-state solution in the temperature-residence time parameter space is obtained with arc-length continuation. The stable operation region is quantified by the eigenvalue analysis. The transition of solution curves is quantified with heat loss coefficient. Five key system parameters are systematically investigated on their effects on stability limits. With the combustion performance being quantified by a combustion state index, a combustion state regulation method is proposed to find the optimal regulation path of system parameters. Active subspace method is further applied to shorten the regulation step by identifying the active direction. The proposed method and findings are useful for optimal regulation of burning LCV gases in industrial burners.  相似文献   
2.
《Ceramics International》2022,48(18):25984-25995
Design of architectured composites with layered-ordered structure can solve the strength-toughness mismatch problem of structural materials. In the present study, heterostructure Ti6Al4V/TiAl laminated composite sheets with different thicknesses of interface layer and TiAl composite layer were successfully produced by hot-pressing technology. The effects of interface regulation and laminated structure on their mechanical properties, crack propagation, and fracture behavior were studied. The results indicated that compressive strength of the sheets increased with the decrease in interface thickness. Compressive strength of TiAl composite sheet with thicker composite layer reached 1481.55 MPa at the arrester orientation with sintering holding time of 40 min, which was 25.96% higher than that of the sheet obtained at 120 min. Analysis indicated that the interface area transferred stress through slip bands and through-interface cracks. Compressive strength at the divider orientation reached 1443.06 MPa, which was 45.78% higher than that of the sheet obtained at 120 min. In this case, the interface area transferred stress through slip bands and along-interface cracks. For TiAl composite sheets with thinner composite layer, compressive strength was further improved to 1631.01 MPa and 1594.66 MPa at the arrester and divider orientations with sintering holding time of 40 min, respectively. The ductile metal layer exerted a significant toughening effect. Both interface regulation and laminated structure transformation could enhance the hetero-deformation induced (HDI) strengthening and improve the comprehensive mechanical properties of the composite sheets.  相似文献   
3.
《Ceramics International》2022,48(13):18793-18802
The luminescence center energy transfer, crystal field strength, and covalency are limited by the crystal structure of the host and subsequently affect the luminescence efficiency, color, and intensity. Here, we report an excellent red phosphor BaLaLiWO6:0.40Eu3+ and the dependence between symmetry and luminous performance. A model for changing symmetry is drawn by analyzing the Coulomb potential and structure for the application of a double-perovskite phosphor BLLWO: Dy3+, Eu3+ in white light LEDs. The addition of Dy3+/Eu3+ makes the W-O bond formed by the B-site and oxygen ion longer and the Li-O bond shorter, and the difference between the eight octahedral around the A-site is reduced, increasing the symmetry of the A-site. Local symmetry was successfully modulated by changing the Eu3+ concentration to control the Y/B ratio of Dy3+ and the R/O ratio of Eu3+ and smoothly achieved (0.382, 0.373) warm white light color coordinate. The phosphor has excellent thermal stability and still has 92.3% intensity at 475 K. The above results show that the wavelength composition of the luminescence is tunable by changing the symmetry of the environment in which the doped ions are located. It applies to single hosts for the regulation of white light emission.  相似文献   
4.
5.
Australia's electricity market is rapidly adding renewable energy generation. Utility-scale batteries could have a major role in facilitating these transitions; however, their deployment is still largely state-subsidized. We summarize the current and future roles for batteries from a legal-economic perspective in the context of Australia's electricity market framework. We find that the future of batteries in Australia is not only a function of the large-scale deployment of renewables, their cost development and the comparative future cost of competing gas turbines but also of national electricity market and state policy reforms focusing on reliability.  相似文献   
6.
7.
8.
《Ceramics International》2021,47(20):28521-28527
Layered O3 type oxides exhibit promising prospects as high-performance cathodes for sodium-ion batteries (SIBs) due to their low cost and high theoretical capacities. Nevertheless, the intrinsic surface composition and bulk structure degradation upon cycling presents a huge obstacle to stable sodium-ion storage/transportation. Besides, the effective surface decoration on layered O3 oxides is still challenging through conventional wet chemical route owing to their extraordinarily high surface sensitivities. Herein, a typical O3 type layered oxide of NaNi0.5Mn0.5O2 (NNMO) was selected and successfully encapsulated by precisely controlled Al2O3 layers via atomic layer deposition (ALD) technology. With the optimally controlled Al2O3 thickness of 3 nm, the surface regulated NNMO delivers a highly reversible capacity of 73.6 mA h g-1, with a significantly improved capacity retention of 68.0% after 300 cycles at 0.5 C, and a superior rate capability of 65.8 mA h g-1 at 10 C. Further air sensitivity tests demonstrate that the protective layer could effectively mitigate the generation of sodium-based impurities on NNMO, and reduce the surface sensitivities. Both chemical and electrochemical aging tests confirm the contribution of Al2O3 coating layer in alleviating ion dissolution as well as stabilizing the structure and morphology of NNMO. Based on regulating the surface of O3 type layered oxides utilizing ALD technique, this work supplies an effective and facile strategy to overcome the challenges from fast structure degradation and electrochemical property decay, which not only highlights the significance and effectiveness of surface engineering in secondary batteries, but also sheds light on accurate interface construction and regulation for active electrode materials, particularly for those sensitive to ambient atmosphere.  相似文献   
9.
This paper proposes decentralized improved synergetic excitation controllers (ISEC) for synchronous generators to enhance transient stability and obtain satisfactory voltage regulation performance of power systems. Each generator is considered as a subsystem, for which an ISEC is designed. According to the control objectives, a manifold, which is a linear combination of the deviation of generator terminal voltage, rotor speed and active power, is chosen for the design of ISEC. Compared with the conventional synergetic excitation controller (CSEC), a parameter adaptation scheme is proposed for updating the controller parameter online in order to improve the transient stability and voltage regulation performance simultaneously under various operating conditions. Case studies are undertaken on a single-machine infinite-bus power system and a two-area four-machine power system, respectively. Simulation results show the ISEC can provide better damping and voltage regulation performance, compared with the CSEC without parameter adaptation scheme and the conventional power system stabilizer.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号