首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60864篇
  免费   4824篇
  国内免费   3019篇
电工技术   1772篇
技术理论   1篇
综合类   4621篇
化学工业   11347篇
金属工艺   9473篇
机械仪表   2984篇
建筑科学   6317篇
矿业工程   4929篇
能源动力   942篇
轻工业   5134篇
水利工程   1625篇
石油天然气   5039篇
武器工业   625篇
无线电   2253篇
一般工业技术   7174篇
冶金工业   3321篇
原子能技术   398篇
自动化技术   752篇
  2024年   821篇
  2023年   2678篇
  2022年   3128篇
  2021年   2988篇
  2020年   2175篇
  2019年   2304篇
  2018年   1283篇
  2017年   1710篇
  2016年   1809篇
  2015年   1989篇
  2014年   3279篇
  2013年   2618篇
  2012年   3029篇
  2011年   3144篇
  2010年   2962篇
  2009年   3098篇
  2008年   3852篇
  2007年   3200篇
  2006年   2814篇
  2005年   2788篇
  2004年   2499篇
  2003年   2544篇
  2002年   2051篇
  2001年   1907篇
  2000年   1360篇
  1999年   1040篇
  1998年   941篇
  1997年   791篇
  1996年   705篇
  1995年   583篇
  1994年   566篇
  1993年   409篇
  1992年   402篇
  1991年   369篇
  1990年   341篇
  1989年   332篇
  1988年   75篇
  1987年   34篇
  1986年   21篇
  1985年   14篇
  1984年   9篇
  1983年   12篇
  1982年   9篇
  1981年   6篇
  1980年   9篇
  1979年   3篇
  1957年   1篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
通过热处理获得等轴组织、双态组织和魏氏组织的Ti6321合金,研究不同组织的Ti6321合金在动态压缩下的绝热剪切行为。利用分离式霍普金森压杆(SHPB)试验装置对帽形试样进行强迫剪切加载,结合扫描电子显微镜和金相显微镜,对其绝热剪切带和微观组织演化进行观察和分析。结果表明:Ti6321合金的绝热剪切敏感性与其组织密切相关,魏氏组织具有最高的绝热剪切敏感性,等轴组织与双态组织的绝热剪切敏感性接近。随着热处理温度的升高,双态组织的Ti6321合金初生α相含量降低,绝热剪切敏感性增大。冲击速度也会对Ti6321合金的绝热剪切行为产生较大影响,随着冲击速度提高,其绝热剪切敏感性提高。  相似文献   
2.
支婷  刘颖  周华春  张宏科 《电子学报》2021,49(8):1653-1664
随着互联网规模的不断扩大以及应用场景的多元化,传统网络无法很好地满足新业务的动态多样化需求,因此国内外对未来网络展开了深入研究.本文首先介绍了未来互联网体系架构的研究现状.其次,介绍了具备"三层、两域"特征的智慧标识网络(Smart Identifier NETwork,SINET)体系架构,然后重点阐述了SINET服务机理在服务的命名与解析、路由机制、服务缓存、移动性、传输控制机制、可扩展性、绿色节能等关键技术方面取得的研究进展,并进一步详细分析了SINET服务机理的安全性.最后总结了SINET面临的挑战,对SINET服务机理在大规模场景部署中可能存在的问题做出讨论.  相似文献   
3.
洪友白 《建筑电气》2021,40(10):3-6
引入雷电冲击电流分时段特性的重要机理,在细究电感特性的基础上,以电感线路电流不能突变为原理,解释说明雷击建筑物时的高电位在雷击"换路"一刹那间先于雷电流发生,并在大底盘建筑群内可靠传导,形成一全范围的高电位"等电位面".据此得出结论:大底盘建筑群是一栋电位紧密关联的防雷建筑物,在装设电源SPD时应将大底盘地面上多栋物理形态分开的建筑合并视为完整的单一一栋建筑,并根据低压电源线路进出大底盘建筑群的不同情况分别按GB 50057-2010《建筑物防雷设计规范》第4.3.8条第4、5款进行电源SPD配置.  相似文献   
4.
《锻压技术》2021,46(10):99-105
选择厚度为0.2 mm的6063铝合金与厚度为5.0 mm的AZ80镁合金进行组坯,设定厚度比为20,分析各热轧压下率下、以热轧方式制得的大厚度比镁铝合金板的组织和力学性能。研究结果表明:当热轧压下率达到45%或更高时,镁铝合金板形成了结合性能优异的界面,镁基体内形成了均匀分布的细小晶粒;提高热轧压下率后,基体中的晶粒尺寸不断减小,此时形成了更小的晶粒尺寸离散系数,更多晶粒被压碎,晶粒分布状态也比较均匀;提高热轧压下率后,获得了更高屈服强度的大厚度比镁铝合金板,材料发生了更明显的加工硬化,而抗拉强度则先增大再下降,当热轧压下率达到55%时,获得了最大的抗拉强度;当热轧压下率达到65%时,韧窝数量明显增多,表明镁合金通过动态再结晶转变获得了更强的韧性。屈服应力呈现明显波动的状态,热轧压下率为35%时,获得了最高的屈服强度,65%热轧压下率下的屈服强度最低,逐渐提高热轧压下率后,屈服应力也不断减小。  相似文献   
5.
通过设计加入速凝剂的水泥净浆实验组和不加速凝剂的空白组两组试验,探究速凝剂对水泥水化的影响作用机理并通过XRD和SEM等手段从微观层面上对水泥水化进程进行表征。XRD试验结果表明,由于速凝剂的加入,水泥在5min之内的水化产物已经可以观察到AFt的衍射峰,并且SEM图中可以观察到大量的针棒状AFt,而空白组在水化2h后才能观察到AFt。这表明硫酸铝类无碱速凝剂是通过引入Al~(3+)来加速C3A的早期水化反应,在短时间内生成大量AFt从而导致水泥速凝。  相似文献   
6.
曹辉林 《金属矿山》2022,51(2):231-236
针对赤泥等固体废弃物对环境危害性大且利用率低等问题,以碱激发赤泥-矿渣基地聚物注浆材料为 研究对象,研究了不同掺量的聚羧酸(PA)减水剂、醛酮缩合物(AKC)减水剂和萘系(N)减水剂对材料凝结时间、流动 性及强度等的影响,并通过 XRD、傅里叶红外光谱及 SEM 等设备对减水剂的作用机理进行研究。 结果表明:减水剂增 强了材料的流动性但降低了材料的剪切应力;N 和 PA 减水剂能缩短材料的凝结时间,但 AKC 减水剂会延长材料的凝 结时间;N 和 AKC 减水剂能提高材料的强度,但 PA 减水剂会降低材料的强度;N 减水剂对材料的综合性能提升效果 更加明显,其最优掺量为 0. 7%;减水剂对赤泥-矿渣基地聚物性能提升的作用机理主要是促进地聚合物凝胶的形成。 研究成果为拓展赤泥在工程上的使用途径和效率提供了理论指导。  相似文献   
7.
为了研究碳纤维混凝土硫酸盐冻侵蚀损伤,以川藏铁路喷射纤维混凝土工程环境为依托进行室内盐冻试验,盐冻最低、最高温度设置为(-37.12、17℃),(-32.12、12℃),(-25.12、5℃),(-20.12、0℃),硫酸盐质量分数分别为5%、7.5%、10%,纤维体积分数分别为0、0.10%、0.20%、0.24%、0.30%。通过宏观强度试验结果和微观分析可知,随着硫酸盐浓度的增加,碳纤维混凝土损伤越严重。与普通混凝土相比,碳纤维混凝土能够有效阻止开裂,其中0.3%的体积分数为最佳掺量。通过微观分析,揭示碳纤维在混凝土结构内起到类似梁的作用机制,并据此建立损伤模型。  相似文献   
8.
9.
为研究钢管套筒灌浆连接轴向受拉破坏过程及破坏机理,试验中设计了16组48个钢管套筒灌浆连接试件,试件采用钢板代替圆钢管,并进行静载试验。分析了灌浆料裂缝扩展过程、荷载-相对位移曲线,并对抗剪键高距比、灌浆料厚度、侧向力等因素对破坏过程及承载力的影响进行分析。结果表明:对于不设置抗剪键的套筒灌浆连接试件,斜裂缝随机产生,裂缝分布不均匀;对于设置抗剪键的套筒灌浆连接试件,裂缝首先出现在底部抗剪键位置处,与水平方向夹角约为30°,随后在中部和上部抗剪键位置处分别出现斜裂缝。由于每个抗剪键上荷载分担并不均匀,与抗剪键接触的灌浆料逐渐达到极限压应力,达到极限状态时,承载力全部由抗剪键间的机械咬合力承担,在连接承载力中,可忽略摩擦力和胶结力作用。随着抗剪键高距比h/s增大,各试件初始剪切刚度相差不大,承载力增大,但增幅逐渐减小,建议抗剪键高距比0.06g/s>0.3,同时需要满足灌浆料灌注的施工要求。  相似文献   
10.
将废弃物石莼与褐煤进行低温共热解,再将共热解半焦用KOH活化制备高性能活性炭材料,Box-Behnken中心组合设计-响应面法优化碱炭比、活化时间、活化温度对吸附性能的影响。结果表明:建立的2个二次多元模型方程均具有极高的显著性,失拟项不显著,方程的确定性系数高。由模型得出理论最佳工艺条件为碱炭比2.95、活化时间59.09 min、活化温度812.9℃。活性炭吸附废水亚甲基蓝的吸附过程符合拟二级动力学模型方程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号