首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   821篇
  免费   53篇
  国内免费   20篇
电工技术   15篇
综合类   99篇
化学工业   175篇
机械仪表   6篇
建筑科学   337篇
矿业工程   25篇
能源动力   6篇
轻工业   14篇
水利工程   175篇
无线电   4篇
一般工业技术   9篇
冶金工业   9篇
原子能技术   1篇
自动化技术   19篇
  2024年   4篇
  2023年   8篇
  2022年   14篇
  2021年   15篇
  2020年   23篇
  2019年   17篇
  2018年   9篇
  2017年   11篇
  2016年   20篇
  2015年   17篇
  2014年   41篇
  2013年   52篇
  2012年   71篇
  2011年   73篇
  2010年   65篇
  2009年   83篇
  2008年   72篇
  2007年   84篇
  2006年   65篇
  2005年   29篇
  2004年   36篇
  2003年   23篇
  2002年   14篇
  2001年   11篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1997年   1篇
  1995年   5篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1954年   1篇
排序方式: 共有894条查询结果,搜索用时 546 毫秒
1.
An approach is presented to satisfy the demand for simple criteria, guidelines and models for the preliminary sizing of horizontal subsurface flow (SF) constructed wetland systems. This approach eliminates time-consuming calculations and iterations by providing graphical solutions for wetland system sizing. Therefore, it can be used for the preliminary assessment of new or performance evaluation of existing subsurface flow constructed wetland systems. The validity of this methodology is checked with data from existing systems and is found to be quite satisfactory. This methodology is combined with simple equations predicting the maximum wetland capacity in summer, so as to assist designers in sizing installations in tourist areas with increased summer populations. Furthermore, based on this methodology, a sensitivity analysis is performed of the area requirements for wastewaters of various strengths and various design conditions and performance criteria. The results provide a useful overview to engineers and further simplify the design methodology of new subsurface flow constructed wetland systems.  相似文献   
2.
Fluvial processes of erosion, sediment transport and deposition determine the changing form and sedimentary structure of naturally adjusting riparian zones. Riparian sediment storage has both scientific and management importance in relation to: (i) the quantities of sediment that are involved; (ii) the quality of the sediment; and (iii) the dispersal of biological materials, notably the vegetation propagules that are transported and deposited in association with the sediment. After discussing the significance of riparian sedimentation processes, this paper reviews methods for quantifying contemporary sediment deposition within water bodies and their margins. Methods for investigating contemporary riparian sedimentation are given particular emphasis, and the extent to which different methods provide comparable estimates and have been used to support the analysis of different physical and chemical properties of the sediment are outlined. The importance of the following are stressed: (i) selecting a sampling method that is suited to the sedimentation environment; (ii) incorporating careful cross‐calibration if measurements from different methods are to be combined; and (iii) replicating measurements to give more robust estimates if small traps are employed. It is concluded that artificial turf mats provide a useful design of sediment trap across a range of environmental conditions because: (i) their surface roughness reduces problems of sediment removal by flood waters or rainfall; (ii) their pliability permits installation on irregular surfaces; (iii) they can be securely attached to the ground with metal pins to resist high shear stresses from river flows; (iv) they are robust and light and so easily manipulated in the field and laboratory; (v) it is possible to fully recover the deposited sediment to accurately determine the amount of sediment deposited and to support a range of other analyses. Results are presented to illustrate how artificial turf mats can be used to estimate the quantity and quality of deposited sediment and to explore the associated deposition of viable seeds. This provides one example of the important hydroecological role of riparian sedimentation processes and of the potential for the development of innovative, interdisciplinary research on riparian sediment dynamics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
3.
介绍了丹江口二桥深水墩基础施工平台的设计,重点介绍利用ANSYS通用有限元程序对施工平台的施工过模拟分析,以及对分析结果的总结。  相似文献   
4.
Epiphytic macroinvertebrate communities of four coastal wetlands of Green Bay, Lake Michigan were compared by taxonomic composition, feeding group composition, and environmental influences using Bray-Curtis ordination. Ordination scores from the most sheltered oligotrophic site, Portage Marsh, were distinct from the eutrophic, exposed sites located in middle and lower Green Bay— Seagull Bar, Little Tail Point, and Dead Horse Bay. Epiphyton chlorophyll a, phytoplankton chlorophyll a, and specific conductance strongly correlated to the ordination axes, indicating the trophic gradient within Green Bay was a primary environmental influence. The feeding group compositions at the sites were consistent with the type and abundance of food available. Portage Marsh is a scraper-shredder system, with macroinvertebrates feeding mainly on epiphyton and coarse particulate detritus. Dead Horse Bay and Little Tail Point are collector systems, sustained by phytoplankton and fine particulate organic matter. Seagull Bar is intermediate in trophic position along the ordination axes, but more closely resemble the latter two sites. The type and abundance of food resources available to these invertebrate communities are influenced by wave exposure, light attenuation, nutrient levels, and algae levels of the littoral and pelagial waters. Macroinvertebrate communities were sensitive to shifts in food resources, which generated shifts in trophic structure.  相似文献   
5.
The U.S. Fish and Wildlife Service uses the term palustrine wetland to describe vegetated wetlands traditionally identified as marsh, bog, fen, swamp, or wet meadow. Landsat TM imagery was combined with image texture and ancillary environmental data to model probabilities of palustrine wetland occurrence in Yellowstone National Park using classification trees. Model training and test locations were identified from National Wetlands Inventory maps, and classification trees were built for seven years spanning a range of annual precipitation. At a coarse level, palustrine wetland was separated from upland. At a finer level, five palustrine wetland types were discriminated: aquatic bed (PAB), emergent (PEM), forested (PFO), scrub-shrub (PSS), and unconsolidated shore (PUS). TM-derived variables alone were relatively accurate at separating wetland from upland, but model error rates dropped incrementally as image texture, DEM-derived terrain variables, and other ancillary GIS layers were added. For classification trees making use of all available predictors, average overall test error rates were 7.8% for palustrine wetland/upland models and 17.0% for palustrine wetland type models, with consistent accuracies across years. However, models were prone to wetland over-prediction. While the predominant PEM class was classified with omission and commission error rates less than 14%, we had difficulty identifying the PAB and PSS classes. Ancillary vegetation information greatly improved PSS classification and moderately improved PFO discrimination. Association with geothermal areas distinguished PUS wetlands. Wetland over-prediction was exacerbated by class imbalance in likely combination with spatial and spectral limitations of the TM sensor. Wetland probability surfaces may be more informative than hard classification, and appear to respond to climate-driven wetland variability. The developed method is portable, relatively easy to implement, and should be applicable in other settings and over larger extents.  相似文献   
6.
Water-level change is integral to the structure and function of Great Lakes coastal wetlands, and many studies document predictable relationships between vegetation and water level. However, anthropogenic stressors, such as invasive species, land-use change, and water-level stabilization, interact to shift the historical cycle (of native vegetation migration up- and down-slope) toward dominance by invasive Typha species. Knowing from earlier studies that water-level stabilization alters the historical vegetation cycle, we asked if similar shifts can occur where water levels are not stabilized. Using historical aerial photographs of three coastal wetlands (in Lake Michigan's Green Bay, Wisconsin), we determined that habitat dominated by Typha species has expanded to eliminate wet meadow habitat. Between 1974 and 1992, linear regressions showed strong, significant relationships of both meadow area (R2 ≥ 0.894; p < 0.02) and marsh area (R2 ≥ 0.784; p < 0.05) to water level in all three wetlands. In 2000, meadow area was below that predicted by the historical pattern due to the landward advance of marsh habitat during a year of decreasing water levels. In the same period, land use in the wetland watersheds converted from agriculture to urban. Urbanization and the replacement of native Typha latifolia by the invasive hybrid Typha xglauca may have overwhelmed the beneficial impact of water-level fluctuation. The documentation of vegetation shifts, as herein, is an essential step in the process of preserving and restoring ecological integrity.  相似文献   
7.
By the year 2020, an additional 300 million tons of rice are needed annually to meet the demands of a growing population. If our natural resource base is to be preserved, intensification strategies should rely on integrated nutrient management, making full use of biological nitrogen fixation. TheAzolla-Anabaena complex is amongst the most effective systems of fixing nitrogen. In this paper we present evidence from greenhouse studies on the potential ofAzolla to curb the volatilization of NH3 following the application of urea to a mixedAzolla-rice culture, providing a new incentive for developing ways of integratingAzolla in intensive rice cultivation systems.The results of a series of short term greenhouse experiments show that a full cover ofAzolla can significantly reduce losses of applied urea-N from 45 and 50% to 20 and 13% for the 30 and 60 kg N ha–1 treatments, respectively. About one-quarter of the applied N was tied up in theAzolla biomass. The applied N inhibitedAzolla growth as well as the amount of N fixed. Inoculation with smaller quantities ofAzolla allowing for more vigorousAzolla multiplication was equally effective in reducing NH3 volatilization and doubled the amount of15N tied-up byAzolla. The reduction in NH3 volatilization is largely related to the depression byAzolla of the floodwater pH, which in its absence may reach values between 9 and 10 as a result of algal activity.Early rice growth responded positively to urea as well as the large quantities of appliedAzolla and increased the yield potential of the crop. Smaller quantities ofAzolla alone were not effective in this regard. The conservation of fertilizer N byAzolla, particularly when it fully covered the water, was reflected in a synergistic effect on rice dry matter production, amounting to 9% at the 30 kg N rate and 16% at the 60 kg N rate. In all likelihood this interaction is attributable to the higher efficiency of the applied N. The benefits ofAzolla in conserving basal urea-N even in small quantities (200-500 kg fresh material ha–1), outweighed competition for the applied N and may be as important as its BNF. The most promising integratedAzolla/rice management systems emerging from our studies should be given further attention under field conditions.  相似文献   
8.
Natural and artificial wetlands have the potential to reduce phosphorus (P) loads from dispersed agricultural runoff and from point sources in the Peel-Harvey catchment, Western Australia. Small experimental systems containing wetland plants and substrate have shown significant removal of P from inflowing water, the proportion of P removed being dependent on P concentration and flow rate of water through the system. The use of artificial wetlands to treat diffuse agricultural runoff is limited by the highly seasonal runoff typical of this Mediterranean climate, while use at point sources has so far been unsuccessful because compounds from the effluent clog the wetland filters. Treatment at point sources may well be feasible after further research.Natural wetlands in the catchment absorb P received in runoff from farmland and, in the absence of any outflow channels to the drainage system, confine this P within the boundaries of the wetland. Disturbance to wetlands may reduce their efficiency in absorbing nutrients and may release P stored in the vegetation and sediment to the water. The conservation of natural wetlands is recommended to maximise nutrient retention in the catchment.  相似文献   
9.
基于高分遥感影像提取2010年、2015年和2020年湿地数据,使用探索性空间数据分析和地理探测器,定量解析了粤港澳大湾区2010—2020年湿地时空变化及其驱动因素。结果表明:2010—2020年粤港澳大湾区湿地面积不断减少,其中,人工湿地减少更明显(305.33 km^(2)),自然湿地减少90.17 km^(2),湿地向建设用地、草地转移是湿地损失的主要形式;2010—2015年湿地损失的主要区域为大湾区中部核心区和沿海城镇带,2015—2020年湿地损失区域在新区、新建产业基地等局部区域聚集;人工湿地变化主要受GDP、渔业产量、第二产业产值等社会经济发展因素驱动,常住人口的影响力逐渐增强;气温、第一产业产值和道路密度对自然湿地变化起重要作用,其余因子影响较弱。  相似文献   
10.
The floodplain wetlands of the southern Murray Darling Basin (MDB) have been subject to the impacts of catchment and water resource development for more than a century. Their current degraded state is attributed to the regulation of the rivers and abstraction of water volume for irrigation. The MDB Plan is to return at least 2,750 Gl of mean annual flow to the system to restore the condition of waterways. Considerable recent investment in infrastructure enables water to be released into the basin's floodplain wetlands. The proposed watering regime is underpinned by modelling that suggests that, before regulation, overbank flows would have occurred regularly as discharge peaked in winter and spring. Sediment cores have been extracted from over 50 floodplain wetlands of the southern Murray Basin. Those from several, large meander wavelength billabongs extend for 1,000–5,000 years suggesting that these sites were permanently inundated over that time. Others extend to ~200 years and are presumed not to have accumulated sediment until more recently. The records of most wetlands, however, only extend to the onset of river regulation in the 1920s, suggesting that before then they were not inundated for sufficient duration for net accumulation to occur. Preserved diatoms suggest that the shallow, plant‐dominated wetlands of the past have transitioned to deep, turbid water systems today. As rivers are identified as a source of sediment to wetlands, less regular inundation, rather than more, is a viable option in restoring the ecological function of these floodplain wetlands and in slowing sediment infill.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号