首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
电工技术   1篇
化学工业   50篇
金属工艺   2篇
一般工业技术   2篇
  2023年   3篇
  2022年   7篇
  2021年   7篇
  2020年   6篇
  2019年   7篇
  2018年   8篇
  2017年   6篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
排序方式: 共有55条查询结果,搜索用时 31 毫秒
1.
The electrocaloric effect and energy storage property are tuned in the Ba1-xCexTi0.99Mn0.01O3 ceramics prepared by the solid state reaction method. The ceramics with lower Ce content (x?=?0.005, 0.015) show a better ΔT and ΔT/ΔE response. The ceramics with higher Ce content (x?=?0.030, 0.040, 0.045) represent the broader ΔT peaks (50?K–60?K), and the higher energy storage density and efficiency. The largest electrocaloric response (ΔTmax?=?1.22?K, ΔT/ΔE?=?0.41?K mm/kV) is found in the Ba0.995Ce0.005Ti0.99Mn0.01O3 ceramics, which is comparable or even higher than that of the most isovalent substituting BaTiO3-based ceramics reported before. The maximum energy storage density 0.11?J/cm3 (E?=?30?kV/cm) is obtained for the Ba0.970Ce0.030Ti0.99Mn0.01O3 ceramics, with high efficiency of 65–88% over a wide temperature range of 72?K. This work may open more opportunities to design high electrocalaric and energy storage performance lead-free systems from the viewpoint of the heterovalent and size mismatch substitution.  相似文献   
2.
《Ceramics International》2020,46(2):1343-1351
((Bi0.5Na0.5TiO3)0.88-(BaTiO3)0.12)(1-x)-(LiNbO3)x (x = 0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, and 0.07; abbreviated as LiNbO3-doped BNT-BT) ceramics possessing many excellent performances (large electrostrain, negative electrocaloric effect and energy storage density with high efficiency) was fabricated by the conventional solid-state reaction method. A large electrostrain (maximum ~ 0.34% at 100 kV/cm and room temperature) with high thermal stability over a broad temperature range (~80 K) is obtained at x = 0.03. A large energy storage density (maximum Wenergy ~ 0.665 J/cm3 at 100 kV/cm and room temperature) with a high efficiency (η ~ 49.3%) is achieved at x = 0.06. Moreover, a large negative electrocaloric (EC) effect (maximum ΔT ~ 1.71 K with ΔS ~ - 0.22 J/(K kg) at 70 kV/cm)) is also obtained at x = 0.04. Phase transition (from ferroelectric to antiferroelectric and then to relaxor) induced by increasing the doping amount of LiNbO3 plays a very key role on the optimization of these performances. These findings and breakthroughs make the LiNbO3-doped BNT-BT ceramics very promising candidates as multifunctional materials.  相似文献   
3.
4.
《Ceramics International》2022,48(11):15640-15646
Ferroelectric ceramic with a large electrocaloric (EC) effect at a very low electric field is very attractive in the next solid state refrigeration technology. In this work, two Pb(Sc0.25In0.25Nb0.25Ta0.25)O3 (PSINT) medium-entropy ceramics were successfully synthesized by a spark plasma sintering (SPS) technology, including one-step-SPS processed and two-step-SPS processed samples. A large EC effect (△T ~ 0.85 K) with a high EC strength (△T/△E ~ 0.021 K cm/kV) around room temperature are obtained at a very low electric field (~40 kV/cm) in the two-step-SPS processed sample. Moreover, the working temperature range is very broad (~120 K), which can be responsible for the high relaxation degree of the dielectric peak. It can be believed that the PSINT medium-entropy ceramics can be promising candidates for application in the next-generation EC cooling devices.  相似文献   
5.
The stability of the electrocaloric effect under electric field cycling is an important consideration in the development of solid-state cooling devices. Here we report measurements carried out on Ba(Zr0.2Ti0.8)O3 ceramics which reveal that the adiabatic temperature change, polarization-electric field hysteresis loops and dielectric permittivity/loss show stable behavior up to 105 cycles. We further demonstrate that the loss in electrocaloric response observed after 105 cycles is associated with the migration of oxygen vacancies. As a result, the electrical properties of the material are changed leading to an increase in leakage current and Joule heating. Reversing the polarity of the electric field after every 105 cycles changes the migration direction of oxygen vacancies, thereby preventing charge accumulation at grain boundaries and electrodes. By doing so, the electrocaloric stability is improved and the adiabatic temperature remains constant even after 106 cycles, much higher than achieved in commercially available barium titanate ceramics.  相似文献   
6.
Multilayer ceramic capacitors (MLCCs) of lead-free NBT-based ceramics are produced and their electrocaloric effect (ECE) is characterised for the first time. Dense MLCCs with 97μm-thick active layers are successfully produced by tape casting. Dielectric permittivity measurements reveal the MLCCs to have properties similar with that reported for the corresponding bulk ceramics, including Td∼50°C and TS∼100°C. Direct ECE measurements also reveal agreement and confirm the previously reported tendency of the high-field ECE peak to shift towards TS. The highest value of ECE, ΔTmax∼1.7K is measured at 90°C under 90kV/cm. A low breakdown strength of 93kV/cm needs to be solved to realise stronger electric fields and achieve commercially viable ECE values.  相似文献   
7.
In this paper, the polarization vs. electric field hysteresis loops of 〈1 1 1〉-oriented 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 (0.9PMN-0.1PT) single crystal at different temperatures (20-110 °C) were measured. The adiabatic temperature change ΔT of 〈1 1 1〉-oriented 0.9PMN-0.1PT single crystal due to the application or withdraw of electric field were calculated through the thermodynamic relation. The largest temperature change ΔT achieves ∼1 K with only a change of 40 kV/cm electric field, the mechanism of the electrocaloric effect (ECE) is discussed for 0.9PMN-0.1PT crystal. The pyroelectric coefficient of 0.9PMN-0.1PT under bias field was calculated according to the data of hysteresis loop. The result shows that 0.9PMN-0.1PT have large pyroelectric coefficient under bias field, the largest (∂P/∂T)E value achieves −0.5 μC/cm2 K.  相似文献   
8.
The (0.94–x)Bi0.5Na0.5TiO3–0.06BaTiO3–x(Sr0.7Bi0.20.1)TiO3 (BNT–BT–xSBT, 0  x  0.24) solid solution ceramics were synthesized via a conventional solid–state reaction method and the correlation of phase structure, piezoelectric, ferroelectric properties and electrocaloric effect (ECE) was investigated in detail. The ECE in lead–free BNT–BT–xSBT ceramics was measured directly using a home–made adiabatic calorimeter with maximum adiabatic temperature change ΔT = 0.4 K with x = 0.08 under the electric field E = 6 kV/mm at room temperature. The position of maximum ECE was found in the vicinity of nonergodic and ergodic phase boundary, where the maximum change in entropy occurs as a result of the field–induced phase transformation between the ergodic and long–range ferroelectric phase. Besides, the mechanism for the shift of ECE peak is discussed in detail. Finally, the temperature dependence of ECE for BNT–BT–xSBT (x = 0, 0.04 and 0.08) was also investigated. This work may present a guideline for designing BNT–based ferroelectric relaxor ceramics for EC cooling technologies.  相似文献   
9.
BaZr0.2Ti0.8O3 (BZT) relaxor ferroelectric (FE) films with tetragonal structure were deposited on Pt/TiO2/SiO2/Si(100) substrates via a sol-gel technique. A giant electrocaloric effect (ECE) was observed in the compact films with ΔT = 43.6 K and ΔS = 61.9 J/K kg at near room temperature of 366.5 K, which was attributed to the high breakdown electric field of E = 1010 kV/cm. Meanwhile, large negative ECE (ΔT = ? 5.2 K and ΔS = ? 8.8 J/K kg at room temperature of 305 K, ΔT = ? 5.1 K and ΔS = ? 7.2 J/K kg at near room temperature of 375 K) were achieved. The abnormal negative ECE is originated from structural transformation in relaxor ferroelectrics. The coexisting of giant negative and positive electrocaloric effects makes it more effective to realize the refrigeration during the application or removal of an electric field. The maximum electrocaloric coefficient (ζmax = 0.043 K cm/kV) and refrigeration efficiency (COP = 35.18) of the films were obtained at near room temperature of 366.5 K. The giant electroelectric effect makes BZT films promising as lead-free materials for application in environment-friendly refrigeration equipment at near room temperature.  相似文献   
10.
In this study, lead-free Ba1-xCaxZryTi1-yO3 (BCTZ(x, y)) ceramics were prepared by means of the classic solid-state reaction method. The morphotropic phase transition (MPB) from the orthorhombic to the tetragonal phase (O-T) was identified in this composition. Besides, the identification of those two structures at room temperature (RT) was made possible thanks to an X-ray diffraction (XRD) study. In order to determine the phase transitions dielectric measurements were conducted. Based on Maxwell equation, the electrocaloric (EC) effect in the studied ceramics was performed via the indirect method. The compositions gave maximum EC temperature changes (ΔT) at above their TC on application of a 3?kV/mm electric field. These temperature changes are ΔT?=?0.565?K at TEC=?392?K, ΔT?=?0.548?K at TEC=?365?K and ΔT?=?0.235?K at TEC=?307?K for BCZT(10%,5%), BCZT(13%,10%) and BCZT(20%,15%), respectively. At RT, these compositions provided a very interesting EC coefficient (ξ?=?ΔTE) compared to the pure BaTiO3 (BT). These values, lying between 0.105 Kmm/kV and 0.188Kmm/kV for ΔE?=?3?kV/mm, are also greater than those related to some lead-based ferroelectric.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号