首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22191篇
  免费   2773篇
  国内免费   1936篇
电工技术   1269篇
技术理论   1篇
综合类   1962篇
化学工业   4017篇
金属工艺   1791篇
机械仪表   1781篇
建筑科学   616篇
矿业工程   329篇
能源动力   262篇
轻工业   718篇
水利工程   149篇
石油天然气   411篇
武器工业   315篇
无线电   5422篇
一般工业技术   5068篇
冶金工业   656篇
原子能技术   216篇
自动化技术   1917篇
  2024年   116篇
  2023年   516篇
  2022年   565篇
  2021年   808篇
  2020年   872篇
  2019年   838篇
  2018年   825篇
  2017年   946篇
  2016年   876篇
  2015年   909篇
  2014年   1261篇
  2013年   1360篇
  2012年   1514篇
  2011年   1557篇
  2010年   1120篇
  2009年   1331篇
  2008年   1184篇
  2007年   1373篇
  2006年   1372篇
  2005年   1193篇
  2004年   982篇
  2003年   780篇
  2002年   691篇
  2001年   597篇
  2000年   503篇
  1999年   440篇
  1998年   372篇
  1997年   322篇
  1996年   288篇
  1995年   261篇
  1994年   231篇
  1993年   183篇
  1992年   165篇
  1991年   145篇
  1990年   101篇
  1989年   76篇
  1988年   48篇
  1987年   23篇
  1986年   22篇
  1985年   27篇
  1984年   23篇
  1983年   17篇
  1982年   23篇
  1981年   4篇
  1980年   5篇
  1979年   7篇
  1977年   6篇
  1976年   4篇
  1975年   4篇
  1974年   6篇
排序方式: 共有10000条查询结果,搜索用时 90 毫秒
1.
Noncentrosymmetric (NCS) tetrel pnictides have recently generated interest as nonlinear optical (NLO) materials due to their second harmonic generation (SHG) activity and large laser damage threshold (LDT). Herein nonmetal-rich silicon phosphides RuSi4P4 and IrSi3P3 are synthesized and characterized. Their crystal structures are reinvestigated using single crystal X-ray diffraction and 29Si and 31P magic angle spinning NMR. In agreement with previous report RuSi4P4 crystallizes in NCS space group P1, while IrSi3P3 is found to crystallize in NCS space group Cm, in contrast with the previously reported space group C2. A combination of DFT calculations and diffuse reflectance measurements reveals RuSi4P4 and IrSi3P3 to be wide bandgap (Eg) semiconductors, Eg = 1.9 and 1.8 eV, respectively. RuSi4P4 and IrSi3P3 outperform the current state-of-the-art infrared SHG material, AgGaS2, both in SHG activity and laser inducer damage threshold. Due to the combination of high thermal stabilities (up to 1373 K), wide bandgaps (≈2 eV), NCS crystal structures, strong SHG responses, and large LDT values, RuSi4P4 and IrSi3P3 are promising candidates for longer wavelength NLO materials.  相似文献   
2.
Poly(l ‐lactic acid) (PLLA) is a biodegradable and biocompatible thermoplastic polyester produced from renewable sources, widely used for biomedical devices, in food packaging and in agriculture. It is a semicrystalline polymer, and as such its properties are strongly affected by the developed semicrystalline morphology. As a function of the crystallization temperature, PLLA can form different crystal modifications, namely α′‐crystals below about 120 °C and α‐crystals at higher temperatures. The α′ modification is therefore of special importance as it may be the preferred polymorph developing at processing‐relevant conditions. It is a metastable modification which typically transforms into the more stable α‐crystals on annealing at elevated temperature. The structure, kinetics of formation and thermodynamics of α′‐ and α‐crystals of PLLA are reviewed in this contribution, together with the effect of α′‐/α‐crystal polymorphism on the properties of PLLA. © 2018 Society of Chemical Industry  相似文献   
3.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
4.
A new technique of EDM coring of single crystal silicon carbide (SiC) ingot was proposed in this paper. Currently single crystal SiC devices are still of high cost due to the high cost of bulk crystal SiC material and the difficulty in the fabrication process of SiC. In the manufacturing process of SiC ingot/wafer, localized cracks or defects occasionally occur due to thermal or mechanical causes resulted from fabrication processes which may waste the whole piece of material. To save the part of ingot without defects and maximize the material utilization, the authors proposed EDM coring method to cut out a no defect ingot from a larger diameter ingot which has localized defects. A special experimental setup was developed for EDM coring of SiC ingot in this study and its feasibility and machining performance were investigated. Meanwhile, in order to improve the machining rate, a novel multi-discharge EDM coring method by electrostatic induction feeding was established, which can realize multiple discharges in single pulse duration. Experimental results make it clear that EDM coring of SiC ingot can be carried out stably using the developed experimental setup. Taking advantage of the newly developed multi-discharge EDM method, both the machining speed and surface integrity can be improved.  相似文献   
5.
Cable‐shaped supercapacitors (SCs) have recently aroused significant attention due to their attractive properties such as small size, lightweight, and bendability. Current cable‐shaped SCs have symmetric device configuration. However, if an asymmetric design is used in cable‐shaped supercapacitors, they would become more attractive due to broader cell operation voltages, which results in higher energy densities. Here, a novel coil‐type asymmetric supercapacitor electrical cable (CASEC) is reported with enhanced cell operation voltage and extraordinary mechanical‐electrochemical stability. The CASECs show excellent charge–discharge profiles, extraordinary rate capability (95.4%), high energy density (0.85 mWh cm−3), remarkable flexibility and bendability, and superior bending cycle stability (≈93.0% after 4000 cycles at different bending states). In addition, the CASECs not only exhibit the capability to store energy but also to transmit electricity simultaneously and independently. The integrated electrical conduction and storage capability of CASECS offer many potential applications in solar energy storage and electronic gadgets.  相似文献   
6.
This paper presents robust and adaptive boundary control designs to stabilize the two‐dimensional vibration of hybrid shaft model. The hybrid shaft is mathematically represented by a set of partial differential equations, governing the shaft vibrations, coupled to ordinary differential equations, describing rigid body spinning and dynamic boundary conditions. The control objective is to stabilize the transverse vibrations of the perturbed shaft while regulating the spinning rate. To achieve this, the paper first establishes robust boundary control laws that fulfil the control objective in the presence of modeling uncertainties and external disturbances operating over the shaft domain and boundary. Lyapunov‐based analyses show that the proposed robust control exponentially stabilizes the shaft with vanishing distributive perturbations, while assuring ultimately bounded vibrations in the case of nonvanishing perturbations. Then, adaptive control philosophy is utilized to achieve redesigned robust controllers that only use online adaptation of control gains without acquiring the knowledge of bounds on perturbations, as well as dynamic parameters. An advantage of this design is avoiding an overconservative robust control law, which may induce poor stability and chattering in tackling system perturbations with unknown upper bounds. Simulations through finite element method illustrate the results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
7.
Cryogels based on poly(vinyl alcohol) [PVA] and three types of bioinsertions such as scleroglucan, cellulose microfibers, and zein, respectively, have been prepared using capacity of PVA to crosslink by repeated freezing–thawing cycles. The effect of the incorporation of biopolymers on the properties of PVA cryogel has been studied by using several techniques such as: scanning electron microscopy, differential scanning calorimetry, and Fourier transform infrared studies. The obtained biobased cryogel membranes were subjected to sorption and to diffusion experiments using Crystal Violet (CV), a dye commonly used in the textile industry and in medicine. Image analysis with CIELAB system was used both to monitor the cryogels loading with CV and to gain insight in the dye state into the gel, in correlation with the bioinsertion type and gels morphology. Dye diffusion but also sorption capacity of the cryogels was found to be closely related to the type of biopolymer. In this article the equilibrium (sorption isotherms) and transport properties (diffusion and permeability coefficients) of CV, in/through physical cross‐linked PVA hydrogel membranes with bioinsertions has been reported. The highest efficiency for the CV removal from aqueous solutions was obtained for the PVA/Scl cryogels. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41838.  相似文献   
8.
以多晶硅锭中硬质点为研究对象,通过实验研究和数值模拟的方法,对多晶硅锭中硬质点进行形貌和成分分析,并提出改善控制方法。研究结果表明硅锭中部的硬质点较细小,主要由SiC组成;硅锭头部的硬质点较粗大,主要由SiC和Si3N4组成,还有少量O的存在。进一步研究发现多晶硅定向凝固铸锭炉的热场结构对于多晶硅锭硬质点形成有直接影响,通过改进热场结构,优化晶体生长界面,显著减少了铸锭中硬质点的数量。  相似文献   
9.
Tunable and ultrabroadband mid-infrared (MIR) emissions in the range of 2.5–4.5 μm are firstly reported from Co2+-doped nano-chalcogenide (ChG) glass composites. The composites embedded with a variety of binary (ZnS, CdS, ZnSe) and ternary (ZnCdS, ZnSSe) ChG nanocrystals (NCs) can be readily obtained by a simple one-step thermal annealing method. They are highly transparent in the near- and mid-infrared wavelength region. Low-cost and commercially available Er3+-doped fiber lasers can be used as the excitation source. By crystal-field engineering of the embedded NCs through cation- or anion-substitution, the emission properties of Co2+ including its emission peak wavelength and bandwidth can be tailored in a broad spectral range. The phenomena can be accounted for by crystal-field theory. Such nano-ChG composites, perfectly filling the 3–4 μm spectral gap between the oscillations of Cr2+ and Fe2+ doped IIVI ChG crystals, may find important MIR photonic applications (e.g., gas sensing), or can be used directly as an efficient pump source for Fe2+: IIVI crystals which are suffering from lack of pump sources.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号