首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48817篇
  免费   4305篇
  国内免费   1709篇
电工技术   1407篇
综合类   3642篇
化学工业   14866篇
金属工艺   1702篇
机械仪表   1683篇
建筑科学   4644篇
矿业工程   449篇
能源动力   516篇
轻工业   7488篇
水利工程   425篇
石油天然气   494篇
武器工业   255篇
无线电   8463篇
一般工业技术   6480篇
冶金工业   659篇
原子能技术   261篇
自动化技术   1397篇
  2024年   203篇
  2023年   623篇
  2022年   1171篇
  2021年   1343篇
  2020年   1331篇
  2019年   1163篇
  2018年   1166篇
  2017年   1678篇
  2016年   1529篇
  2015年   1764篇
  2014年   2422篇
  2013年   2746篇
  2012年   3335篇
  2011年   3303篇
  2010年   2595篇
  2009年   2839篇
  2008年   2516篇
  2007年   3379篇
  2006年   3323篇
  2005年   2862篇
  2004年   2288篇
  2003年   1897篇
  2002年   1732篇
  2001年   1459篇
  2000年   1162篇
  1999年   973篇
  1998年   697篇
  1997年   597篇
  1996年   461篇
  1995年   423篇
  1994年   385篇
  1993年   314篇
  1992年   311篇
  1991年   280篇
  1990年   210篇
  1989年   150篇
  1988年   38篇
  1987年   31篇
  1986年   23篇
  1985年   26篇
  1984年   26篇
  1983年   12篇
  1982年   18篇
  1981年   4篇
  1980年   12篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Various methods have been developed to monitor the health and strain state of carbon fiber reinforced polymers, each with a unique set of pros and cons. This research assesses the use of piezoresistive sensors for in situ strain measurement of carbon fiber and other composite structures in multidirectional laminates. The piezoresistive sensor material and the embedded circuitry are both evaluated. For the piezoresistive sensor, a conductive nickel nanocomposite sensor is compared with the piezoresistivity of the carbon fiber itself. For the circuit, the use of carbon fibers already present in the structure is compared with the use of nickel coated carbon fiber. Successful localized strain sensing is demonstrated for several sensor and circuitry configurations. Numerous engineering applications are possible in the ever-growing field of carbon-composites.  相似文献   
2.
The goal of the study was to evaluate and compare the physical properties of control, pretreated and densified corn stover, switchgrass, and prairie cord grass samples. Ammonia Fiber Expansion (AFEX) pretreated switchgrass, corn stover, and prairie cord grass samples were densified by using the comPAKco device developed by Federal Machine Company of Fargo, ND. The densified biomass were referred as “PAKs” in this study. All feedstocks were ground into three different grind size of 2, 4 and 8 mm prior to AFEX pretreatment and the impact of grinding on pellet properties was studied. The results showed that the physical properties of AFEX-PAKed material were not influenced by the initial grind size of the feedstocks. The bulk density of the AFEX-PAKed biomass increased by 1.2–6 fold as compared to untreated and AFEX-pretreated materials. The durability of the AFEX-PAKed materials were between 78.25 and 95.2%, indicating that the AFEX-PAKed biomass can be transported easily. To understand the effect of storage on the physical properties of these materials, samples were stored in the ambient condition (20 ± 2 °C and 70 ± 5% relative humidity) for six months. After storage, thermal properties of the biomass did not change but glass transition temperature decreased. The water absorption index and water solubility index of AFEX-treated and AFEX-PAKed biomass showed mixed trends after storage. Moisture content decreased and durability increased upon storage.  相似文献   
3.
Carbon nanotubes are the most promising reinforcement for high performance composites. Multiwall carbon nanotubes were directly grown onto the carbon fiber surface by catalytic thermal chemical vapor deposition technique. Multi-scale hybrid composites were fabricated using the carbon nanotubes grown fibers with epoxy matrix. Morphology of the grown carbon nanotubes was investigated using field emission scanning electron microscopy and transmission electron microscopy. The fabricated composites were subjected to impact tests which showed 48.7% and 42.2% higher energy absorption in Charpy and Izod impact tests respectively. Fractographic analysis of the impact tested specimens revealed the presence of carbon nanotubes both at the fiber surface and within the matrix which explained the reason for improved energy absorption capability of these composites. Carbon nanotubes presence at various cracks formed during loading provided a direct evidence of micro crack bridging. Thus the enhanced fracture strength of these composites is attributed to stronger fiber–matrix interfacial bonding and simultaneous matrix strengthening due to the grown carbon nanotubes.  相似文献   
4.
介绍机械制造厂燃煤锅炉的烟尘特点,分析滤料失效的原因,提出一套针对该工况的滤料解决方案。介绍针对复杂工况条件所选用的纤维种类以及复合面层原料成分配比的确定,最终选用针刺工艺加工并对该新产品的基本性能进行了测试分析。  相似文献   
5.
The Er3+ doped oxyfluorogermanate glasses, with a composition containing Na element, were synthesized by the conventional melting–quenching technique. When Na element was introduced into the composition of oxyfluorogermanate glass, the crystals behavior was investigated in details. Depending on the annealing procedure supplied, thermal annealing of precursor glasses in the system GeO2/BaF2/AlF3/Na2O/NaF/ZnO/GdF3/ErF3 led to the precipitation of different crystal phase nanocrystals. It was confirmed the nanocrystals in GC600 is orthorhombic NaBaAlF6 which led to enhance obviously in the UC luminescence of Er3+. However, the nanocrystals in G585 led to decrease in the UC luminescence, which indicated few Er ions enter into the lattice of this nanocrystal phase. The reason of the decrease in UC emission intensity of GC585 was analyzed.  相似文献   
6.
This study presents a design criterion developed for fatigue strengthening of a 120-year-old metallic railway bridge in Switzerland and presents a pre-stressed un-bonded reinforcement (PUR) system developed to apply the strengthening. The PUR system uses carbon fiber reinforced polymer (CFRP) plates; however, unlike conventional pre-stressed CFRP reinforcement methods, preparation of the existing metallic bridge surface is not required. This decreases the time required for on-site strengthening procedures. The principle of the constant life diagram (CLD) and two fatigue failure criteria (Johnson and Goodman) are described. Analytical formulations are developed based on the CLD method to determine the minimum CFRP pre-stress level required to prevent fatigue crack initiation. The PUR system uses an applied pre-stress force to reduce the mean stress level (and stress ratio) to shift an existing fatigue-susceptible metallic detail from the ‘at risk’ finite life regime to the ‘safe’ infinite life regime. The applied CLD method is particularly valuable when the stress history of the detail is not known and it is difficult to assess the remaining fatigue life. Moreover, it is shown that the currently adopted approach in many structural codes which emphasizes stress range as the dominant parameter influencing fatigue life are non-conservative for tension–tension stress patterns (i.e., stress ratios of 0 < R < 1). Analyses show that the modified Johnson formula accurately reflects the combined effect of stress range, mean stress level, and material properties, and offers a relatively easy design procedure. Details of a retrofit field application on members of a riveted wrought iron railway bridge are given. A wireless sensor network (WSN) system is used for long-term monitoring of the on-site CFRP stress levels and temperature of the retrofitted details. WSN measurements indicate that increases in ambient temperature result in increased CFRP pre-stress levels.  相似文献   
7.
Tunable and ultrabroadband mid-infrared (MIR) emissions in the range of 2.5–4.5 μm are firstly reported from Co2+-doped nano-chalcogenide (ChG) glass composites. The composites embedded with a variety of binary (ZnS, CdS, ZnSe) and ternary (ZnCdS, ZnSSe) ChG nanocrystals (NCs) can be readily obtained by a simple one-step thermal annealing method. They are highly transparent in the near- and mid-infrared wavelength region. Low-cost and commercially available Er3+-doped fiber lasers can be used as the excitation source. By crystal-field engineering of the embedded NCs through cation- or anion-substitution, the emission properties of Co2+ including its emission peak wavelength and bandwidth can be tailored in a broad spectral range. The phenomena can be accounted for by crystal-field theory. Such nano-ChG composites, perfectly filling the 3–4 μm spectral gap between the oscillations of Cr2+ and Fe2+ doped IIVI ChG crystals, may find important MIR photonic applications (e.g., gas sensing), or can be used directly as an efficient pump source for Fe2+: IIVI crystals which are suffering from lack of pump sources.  相似文献   
8.
The high cost and potential toxicity of biodegradable polymers like poly(lactic‐co‐glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate–modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α‐lactalbumin (α‐L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim–Andersen–de Boer model indicated that native waxy corn had significantly (P < 0.05) higher water monolayer capacity followed by 3%‐OSA‐modified DWxCn, WPI, 3%‐OSA‐modified DWxRc, α‐L, and native phytoglycogen. WPC had significantly lower water monolayer capacity. All Tg values matched with the solid‐like appearance of the biopolymers. Native polysaccharides and whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%‐OSA modification had a “melted” appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA‐modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications.  相似文献   
9.
3D laser ultramicroscopy (3D LUM) is intended specially for determining the concentration and size distribution of submicron inclusions in the bulk samples of high-purity materials for visible and IR fiber optics. In this work the 3D LUM technique is shown to be able to identify the nature of individual inclusions detected. The measurement of the light scattered by an inclusion at a varied probe beam wavelength and polarization and at a varied scattered light collection angle makes it possible to determine the inclusion refractive index. The 3D LUM possibilities are illustrated by the example of studying the inclusion nature in the As2S3 glass samples prepared by the direct synthesis from elements in a quartz container at elevated temperatures.  相似文献   
10.
张旗  刘太奇  张庆成 《材料导报》2018,32(Z1):245-247
近几年,由于节能与环保的需求,电取暖的方式得到大力的推广,电热材料的研究与应用受到人们广泛的重视。非金属碳基电热材料是新型的节能型电热采暖材料,本文重点对影响非金属碳基电热材料中的炭黑基电热材料、碳纤维基电热材料、碳晶电热材料电热性能的因素及相关应用进行了综述。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号