首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301672篇
  免费   22872篇
  国内免费   14868篇
电工技术   17934篇
技术理论   52篇
综合类   38094篇
化学工业   40021篇
金属工艺   12416篇
机械仪表   15365篇
建筑科学   38325篇
矿业工程   16079篇
能源动力   13859篇
轻工业   18446篇
水利工程   14239篇
石油天然气   15968篇
武器工业   2621篇
无线电   17577篇
一般工业技术   21902篇
冶金工业   18177篇
原子能技术   3208篇
自动化技术   35129篇
  2024年   786篇
  2023年   3237篇
  2022年   5939篇
  2021年   7163篇
  2020年   7498篇
  2019年   6250篇
  2018年   5645篇
  2017年   6746篇
  2016年   7900篇
  2015年   8814篇
  2014年   16715篇
  2013年   15665篇
  2012年   20163篇
  2011年   21291篇
  2010年   16940篇
  2009年   17484篇
  2008年   16075篇
  2007年   21155篇
  2006年   20250篇
  2005年   17716篇
  2004年   15147篇
  2003年   13650篇
  2002年   11368篇
  2001年   9568篇
  2000年   8054篇
  1999年   6554篇
  1998年   4965篇
  1997年   4266篇
  1996年   3922篇
  1995年   3307篇
  1994年   2944篇
  1993年   2172篇
  1992年   1924篇
  1991年   1421篇
  1990年   1265篇
  1989年   1097篇
  1988年   866篇
  1987年   592篇
  1986年   438篇
  1985年   389篇
  1984年   368篇
  1983年   268篇
  1982年   224篇
  1981年   178篇
  1980年   146篇
  1979年   120篇
  1978年   65篇
  1977年   77篇
  1976年   56篇
  1975年   57篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
In this study, the separation of hydrogen from gas mixtures using a palladium membrane coupled with a vacuum environment on the permeate side was studied experimentally. The gas mixtures composed of H2, N2, and CO2 were used as the feed. Hydrogen permeation fluxes were measured with membrane operating temperature in the range of 320–380 °C, pressures on the retentate side in the range of 2–5 atm, and vacuum pressures on the permeate side in the range of 15–51 kPa. The Taguchi method was used to design the operating conditions for the experiments based on an orthogonal array. Using the measured H2 permeation fluxes from the Taguchi approach, the stepwise regression analysis was also employed for establishing the prediction models of H2 permeation flux, followed by the analysis of variance (ANOVA) to identify the significance and suitability of operating conditions. Based on both the Taguchi approach and ANOVA, the H2 permeation flux was mostly affected by the gas mixture composition, followed by the retentate side pressure, the vacuum degree, and the membrane temperature. The predicted optimal operating conditions were the gas mixture with 75% H2 and 25% N2, the membrane temperature of 320 °C, the retentate side pressure of 5 atm, and the vacuum degree of 51 kPa. Under these conditions, the H2 permeation flux was 0.185 mol s?1 m?2. A second-order normalized regression model with a relative error of less than 7% was obtained based on the measured H2 permeation flux.  相似文献   
2.
The demand for clean energy use has been increasing worldwide, and hydrogen has attracted attention as an alternative energy source. The efficient transport of hydrogen must be established such that hydrogen may be used as an energy source. In this study, we considered the influences of various parameters in the transportation of liquefied hydrogen using type C tanks in shipping vessels. The sloshing and thermal flows were considered in the transportation of liquefied hydrogen, which exists as a cryogenic liquid at ?253 °C. In this study, the sloshing flow was analyzed using a numerical approach. A multiphase sloshing simulation was performed using the volume of fluid method for the observation and analysis of the internal flow. First, a sloshing experiment according to the gas-liquid density ratio performed by other researchers was utilized to verify the simulation technique and investigate the characteristics of liquefied hydrogen. Based on the results of this experiment, a sloshing simulation was then performed for a type C cargo tank for liquefied hydrogen carriers under three different filling level conditions. The sloshing impact pressure inside of the tank was measured via simulation and subjected to statistical analysis. In addition, the influence of sloshing flow on the appendages installed inside of the type C tank (stiffened ring and swash bulkhead) was quantitatively evaluated. In particular, the influence of the sloshing flow inside of the type C tank on the appendages can be utilized as an important indicator at the design stage. Furthermore, if such sloshing impact forces are repeatedly experienced over an extended period of time under cryogenic conditions, the behavior of the tank and appendages must be analyzed in terms of fatigue and brittle failure to ensure the safety of the transportation operation.  相似文献   
3.
Waste-to-fuel coupled with carbon capture and storage is forecasted to be an effective way to mitigate the greenhouse gas emissions, reduce the waste sent to landfill and, simultaneously, reduce the dependence of fossil fuels. This study evaluated the techno-economic feasibility of sorption enhanced gasification, which involves in-situ CO2 capture, and benchmarked it with the conventional steam gasification of municipal solid waste for H2 production. The impact of a gate fee and tax levied on the fossil CO2 emissions in economic feasibility was assessed. The results showed that the hydrogen production was enhanced in sorption enhanced gasification, that achieved an optimum H2 production efficiency of 48.7% (T = 650 °C and SBR = 1.8). This was 1.0% points higher than that of the conventional steam gasification (T = 900 °C and SBR = 1.2). However, the total efficiency, which accounts for H2 production and net power output, for sorption enhanced gasification was estimated to be 49.3% (T = 650 °C and SBR = 1.8). This was 4.4% points lower than the figure estimated for the conventional gasification (T = 900 °C and SBR = 1.2). The economic performance assessment showed that the sorption enhanced gasification will result in a significantly higher levelised cost of hydrogen (5.0 €/kg) compared to that estimated for conventional steam gasification (2.7 €/kg). The levelised cost of hydrogen can be reduced to 4.5 €/kg on an introduction of the gate fee of 40.0 €/tMSW. The cost of CO2 avoided was estimated to be 114.9 €/tCO2 (no gate fee and tax levied). However, this value can be reduced to 90.1 €/tCO2 with the introduction of an emission allowance price of 39.6 €/tCO2. Despite better environmental performance, the capital cost of sorption enhanced gasification needs to be reduced for this technology to become competitive with mature gasification technologies.  相似文献   
4.
Hexagonal boron nitride (h-BN) as a layered inorganic nonmetallic material has been widely used. Hydrogen peroxide (H2O2) modification can trigger exfoliation and afford abundant B–OH active sites at edge of h-BN, which can enhance methane activation ability. Introducing tungsten oxide (WO3) to h-BN produces a similar effect, because doping WO3 into h-BN resulted in electron transfer to N, inducing fracture of B–N bond, resulting in N vacancy (triboron center), exposing more B sites and promoting the generation of B–OH. Significantly, the introduction of WO3 on the modified h-BN dramatically increased the concentration of B–OH compared with the unmodified h-BN, because H2O2 modification weakened B–N bond. By means of XRD, TEM, XPS,EPR, FT-IR, it is proved that the high concentration of B–OH active sites contributed to activating C–H bond, thus methane conversion and CO and H2 selectivity were significantly improved.  相似文献   
5.
On-site hydrogen production through steam-methane reforming (SMR) from city gas or natural gas is believed to be a cost-effective way for hydrogen-based infrastructure due to high cost of hydrogen transportation. In recent years, there have been a lot of on-site hydrogen fueling stations under design or construction in China. This study introduces current developments and technology prospects of skid-mounted SMR hydrogen generator. Also, technical solutions and economic analysis are discussed based on China's first on-site hydrogen fueling station project in Foshan. The cost of hydrogen product from skid-mounted SMR hydrogen generator is about 23 CNY/kg with 3.24 CNY/Nm3 natural gas. If hydrogen price is 60 CNY/kg, IRR of on-site hydrogen fueling station project reaches to 10.8%. While natural gas price fall to 2.3 CNY/Nm3, the hydrogen cost can be reduced to 18 CNY/kg, and IRR can be raised to 13.1%. The conclusion is that skid-mounted SMR technology has matured and is developing towards more compact and intelligent design, and will be a promising way for hydrogen fueling infrastructures in near future.  相似文献   
6.
A new route of materials synthesis, namely, high-temperature, high-pressure reactive planetary ball milling (HTPRM), is presented. HTPRM allows for the mechanosynthesis of materials at fully controlled temperatures of up to 450 °C and pressures of up to 100 bar of hydrogen. As an example of this application, a successful synthesis of magnesium hydride is presented. The synthesis was performed at controlled temperatures (room temperature (RT), 100, 150, 200, 250, 300, and 325 °C) while milling in a planetary ball mill under hydrogen pressure (>50 bar). Very mild milling conditions (250 rpm) were applied for a total milling time of 2 h, and a milling vial with a relatively small diameter (φ = 53 mm, V = ~0.06 dm3) was used. The effect of different temperatures on the synthesis kinetics and outcome were examined. The particle morphology, phase composition, reaction yield, and particle size were measured and analysed by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) techniques. The obtained results showed that increasing the temperature of the process significantly improved the reaction rate, which suggested the great potential of this technique for the mechanochemical synthesis of materials.  相似文献   
7.
The continuous catalytic regenerative (CCR) reforming process is one of the most significant sources of hydrogen production in the petroleum refining process. However, the fluctuations in feedstock composition and flow rate could significantly affect both product distribution and energy consumption. In this study, a robust deviation criterion based multi-objective optimization approach is proposed to perform the optimal operation of CCR reformer under feedstock uncertainty, with simultaneous maximization of product yields and minimization of energy consumption. Minimax approach is adopted to handle these uncertain objectives, and the Latin hypercube sampling method is then used to calculate these robust deviation criteria. Multi-objective surrogate-based optimization methods are next introduced to effectively solve the robust operational problem with high computational cost. The level diagram method is finally utilized to assist in multi-criteria decision-making. Two robust operational optimization problems with different objectives are solved to demonstrate the effectiveness of the proposed method for robust optimal operation of the CCR reforming process under feedstock uncertainty.  相似文献   
8.
The main objective of the present investigation is to conduct the performance, combustion and emission analysis of CI engine operated using hydrogen enriched syngas (pyrolytic gas) and biodiesel (pyrolytic oil) as dual fuel mode condition. Both the pyrolytic oil and syngas is obtained from single feedstock delonix regia fruit pod through pyrolysis process and then pyrolytic oil is converted into biodiesel through esterification. Initially biomass is subjected to thermal degradation at various pyrolysis temperature ranges like 350–600 °C. During the pyrolysis process syngas, pyrolytic oil and char are produced. The syngas is directly used in the CI engine and pyrolytic oil is converted into biodiesel and then used in the CI engine. The pyrolytic oil and syngas is subjected to FTIR and GC/TCD analysis respectively. The syngas analysis confirms the presence of various gases like H2, CH4, CO2, CO and C2H4 in different proportions. The various proportions of the syngas is mainly depending upon the reactor temperature and moisture content in the biomass. The syngas composition varies with increase in the temperature and at 400 °C, higher amount of hydrogen is present and its composition are H2 28.2%, CO is 21.9%, CH4 is 39.1% and other gases in smaller amounts. The biodiesel of B20 and syngas of 8lpm produced from the same feedstock are considered as test sample fuels in the CI engine under dual fuel mode operation to study the performance and emission characteristics. The study reveals that BTE has slight increase than diesel of 1.5% at maximum load. On the another hand emission like CO, HC and smoke are reduced by 15%,25% and 32% respectively at full load condition, whereas NOx emission is increased at all loads in the range of 10–15%. Therefore B20+syngas of 8lpm can be used as an alternative fuel in CI engine without any modification and major products from pyrolysis process with waste biomass is fully used as fuel in the CI engine.  相似文献   
9.
Sweet pickled mango named Ma-Muang Bao Chae-Im is a traditional preserved mango from Hat Yai, Thailand. This study investigated (I) volatile and non-volatile compound profiles of commercial Ma-Muang Bao Chae-Im and (II) their relationship to consumer preference. Untargeted metabolomics profiling was performed by gas chromatography-mass quadrupole-time of flight analysis. There were 117 volatile and 44 non-volatile compounds annotated in six commercial brands of Ma-Muang Bao Chae-Im. Furthermore, 46 volatile and 19 non-volatile compounds’ discriminant markers were found by Partial least square discriminant analysis. Among those markers, sorbic and benzoic acid were observed in several brands; moreover, the combination of both compounds altered the volatile profile, especially the ester group. Partial least square regression revealed that overall consumer liking is correlated to 1-heptanol; 1-octanol; acetoin; acetic acid, 2-phenylethyl ester; D-manitol; terpenes and terpenoids, while firmness to sucrose and L-(-)-sorbofuranose. On the other hand, most ester compounds were not related to consumer preference.  相似文献   
10.
This paper investigates PID control design for a class of planar nonlinear uncertain systems in the presence of actuator saturation. Based on the bounds on the growth rates of the nonlinear uncertain function in the system model, the system is placed in a linear differential inclusion. Each vertex system of the linear differential inclusion is a linear system subject to actuator saturation. By placing the saturated PID control into a convex hull formed by the PID controller and an auxiliary linear feedback law, we establish conditions under which an ellipsoid is contractively invariant and hence is an estimate of the domain of attraction of the equilibrium point of the closed-loop system. The equilibrium point corresponds to the desired set point for the system output. Thus, the location of the equilibrium point and the size of the domain of attraction determine, respectively, the set point that the output can achieve and the range of initial conditions from which this set point can be reached. Based on these conditions, the feasible set points can be determined and the design of the PID control law that stabilizes the nonlinear uncertain system at a feasible set point with a large domain of attraction can then be formulated and solved as a constrained optimization problem with constraints in the form of linear matrix inequalities (LMIs). Application of the proposed design to a magnetic suspension system illustrates the design process and the performance of the resulting PID control law.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号