首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43404篇
  免费   5019篇
  国内免费   3082篇
电工技术   3640篇
技术理论   1篇
综合类   4229篇
化学工业   6747篇
金属工艺   3170篇
机械仪表   3522篇
建筑科学   2906篇
矿业工程   2161篇
能源动力   1335篇
轻工业   2625篇
水利工程   1330篇
石油天然气   2622篇
武器工业   695篇
无线电   3187篇
一般工业技术   5189篇
冶金工业   2210篇
原子能技术   485篇
自动化技术   5451篇
  2024年   150篇
  2023年   584篇
  2022年   1151篇
  2021年   1321篇
  2020年   1476篇
  2019年   1284篇
  2018年   1193篇
  2017年   1591篇
  2016年   1693篇
  2015年   1675篇
  2014年   2461篇
  2013年   2772篇
  2012年   2935篇
  2011年   3165篇
  2010年   2376篇
  2009年   2604篇
  2008年   2391篇
  2007年   2926篇
  2006年   2726篇
  2005年   2320篇
  2004年   1941篇
  2003年   1711篇
  2002年   1450篇
  2001年   1176篇
  2000年   1055篇
  1999年   934篇
  1998年   696篇
  1997年   660篇
  1996年   492篇
  1995年   470篇
  1994年   427篇
  1993年   280篇
  1992年   274篇
  1991年   224篇
  1990年   196篇
  1989年   150篇
  1988年   112篇
  1987年   68篇
  1986年   54篇
  1985年   36篇
  1984年   49篇
  1983年   32篇
  1982年   32篇
  1981年   37篇
  1980年   25篇
  1979年   25篇
  1978年   20篇
  1977年   13篇
  1959年   12篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
1.
In this work, assembly pressure and flow channel size on proton exchange membrane fuel cell performance are optimized by means of a multi-model. Based on stress-strain data of the SGL-22BB GDL obtained from its initial compression experiments, Young's modulus with different ranges of assembly pressure fits well through modeling. A mechanical model is established to analyze influences of assembly pressure on various gas diffusion layer parameters. Moreover, a CFD calculation model with different assembly pressures, channel width, and channel depth are established to calculate PEMFC performances. Furthermore, a BP neural network model is utilized to explore optimal combination of assembly pressure, channel width and channel depth. Finally, the CFD model is used to validate effect of size optimization on PEMFC performance. Results indicate that gap change of GDL below bipolar ribs is more remarkable than that below channels under action of the assembly pressure, making liquid water easily transported under high porosity, which is conducive to liquid water to the channels, reduces the accumulation of liquid water under the ribs, and enhances water removal in the PEMFC. Affected by the assembly force, change of GDL porosity affects its diffusion rate, permeability and other parameters, which is not conducive to mass transfer in GDL. Optimizing the depth and different dimensions through width of the flow field can effectively compensate for this effect. Therefore, the PEMFC performance can be enhanced through the comprehensive optimization of the assembly force, flow channel width and flow channel depth. The optimal parameter is obtained when assembly pressure, channel width and channel depth are set as 0.6 MPa, 0.8 mm, and 0.8 mm, respectively. The parameter optimization enhances the mass transfer, impedance, and electrochemical characteristics of PEMFC. Besides, it effectively enhances the quality transfer efficiency inside GDL, prevents flooding, and reduces concentration loss and ohmic loss.  相似文献   
2.
This article presents a state-space model with time-delay to map the relationship between known input-output data for discrete systems. For the given input-output data, a model identification algorithm combining parameter estimation and state estimation is proposed in line with the causality constraints. Consequently, this article proposes a least squares parameter estimation algorithm, and analyzes its convergence for the studied systems to prove that the parameter estimation errors converge to zero under the persistent excitation conditions. In control system design, the U-model based control is introduced to provide a unilateral platform to improve the design efficiency and generality. A simulation portfolio from modeling to control is provided with computational experiments to validate the derived results.  相似文献   
3.
Accurate and timely network traffic measurement is essential for network status monitoring, network fault analysis, network intrusion detection, and network security management. With the rapid development of the network, massive network traffic brings severe challenges to network traffic measurement. However, existing measurement methods suffer from many limitations for effectively recording and accurately analyzing big-volume traffic. Recently, sketches, a family of probabilistic data structures that employ hashing technology for summarizing traffic data, have been widely used to solve these problems. However, current literature still lacks a thorough review on sketch-based traffic measurement methods to offer a comprehensive insight on how to apply sketches for fulfilling various traffic measurement tasks. In this paper, we provide a detailed and comprehensive review on the applications of sketches in network traffic measurement. To this end, we classify the network traffic measurement tasks into four categories based on the target of traffic measurement, namely cardinality estimation, flow size estimation, change anomaly detection, and persistent spreader identification. First, we briefly introduce these four types of traffic measurement tasks and discuss the advantages of applying sketches. Then, we propose a series of requirements with regard to the applications of sketches in network traffic measurement. After that, we perform a fine-grained classification for each sketch-based measurement category according to the technologies applied on sketches. During the review, we evaluate the performance, advantages and disadvantages of current sketch-based traffic measurement methods based on the proposed requirements. Through the thorough review, we gain a number of valuable implications that can guide us to choose and design proper traffic measurement methods based on sketches. We also review a number of general sketches that are highly expected in modern network systems to simultaneously perform multiple traffic measurement tasks and discuss their performance based on the proposed requirements. Finally, through our serious review, we summarize a number of open issues and identify several promising research directions.  相似文献   
4.
5.
《Journal of dairy science》2022,105(3):2408-2425
Reggiana and Modenese are autochthonous cattle breeds, reared in the North of Italy, that can be mainly distinguished for their standard coat color (Reggiana is red, whereas Modenese is white with some pale gray shades). Almost all milk produced by these breeds is transformed into 2 mono-breed branded Parmigiano-Reggiano cheeses, from which farmers receive the economic incomes needed for the sustainable conservation of these animal genetic resources. After the setting up of their herd books in 1960s, these breeds experienced a strong reduction in the population size that was subsequently reverted starting in the 1990s (Reggiana) or more recently (Modenese) reaching at present a total of about 2,800 and 500 registered cows, respectively. Due to the small population size of these breeds, inbreeding is a very important cause of concern for their conservation programs. Inbreeding is traditionally estimated using pedigree data, which are summarized in an inbreeding coefficient calculated at the individual level (FPED). However, incompleteness of pedigree information and registration errors can affect the effectiveness of conservation strategies. High-throughput SNP genotyping platforms allow investigation of inbreeding using genome information that can overcome the limits of pedigree data. Several approaches have been proposed to estimate genomic inbreeding, with the use of runs of homozygosity (ROH) considered to be the more appropriate. In this study, several pedigree and genomic inbreeding parameters, calculated using the whole herd book populations or considering genotyping information (GeneSeek GGP Bovine 150K) from 1,684 Reggiana cattle and 323 Modenese cattle, were compared. Average inbreeding values per year were used to calculate effective population size. Reggiana breed had generally lower genomic inbreeding values than Modenese breed. The low correlation between pedigree-based and genomic-based parameters (ranging from 0.187 to 0.195 and 0.319 to 0.323 in the Reggiana and Modenese breeds, respectively) reflected the common problems of local populations in which pedigree records are not complete. The high proportion of short ROH over the total number of ROH indicates no major recent inbreeding events in both breeds. ROH islands spread over the genome of the 2 breeds (15 in Reggiana and 14 in Modenese) identified several signatures of selection. Some of these included genes affecting milk production traits, stature, body conformation traits (with a main ROH island in both breeds on BTA6 containing the ABCG2, NCAPG, and LCORL genes) and coat color (on BTA13 in Modenese containing the ASIP gene). In conclusion, this work provides an extensive comparative analysis of pedigree and genomic inbreeding parameters and relevant genomic information that will be useful in the conservation strategies of these 2 iconic local cattle breeds.  相似文献   
6.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
7.
《Journal of dairy science》2022,105(4):3176-3191
Milk concentrates are used in the manufacturing of dairy products such as yogurt and cheese or are processed into milk powder. Processes for the nonthermal separation of water and valuable milk ingredients are becoming increasingly widespread at farm level. The technical barriers to using farm-manufactured milk concentrate in dairies are minimal, hence the suspicion that the practice of on-farm raw milk concentration is still fairly uncommon for economic reasons. This study, therefore, set out to investigate farmers' potential willingness to adopt a raw milk concentration plant. The empirical analysis was based on discrete choice experiments with 75 German dairy farmers to identify preferences and the possible adoption of on-farm raw milk concentration. The results showed that, in particular, farmers who deemed the current milk price to be insufficient viewed on-farm concentration using membrane technology as an option for diversifying their milk sales. We found no indication that adoption would be impeded by a lack of trustworthy information on milk processing technologies or capital.  相似文献   
8.
《Ceramics International》2022,48(15):21951-21960
A high surface area is one of desired properties for yttria-zirconia (Y2O3–ZrO2) ceramic materials given their catalytic applications. The objective of this study is to develop high-surface-area Y2O3–ZrO2 materials by silicon (Si) modification and investigate the role of Si. Si-modified yttrium-zirconium hydroxides were prepared via a one-step precipitation process and calcined at 800 or 950 °C to form Si-modified Y2O3–ZrO2 (denoted as SiO2–Y2O3–ZrO2) materials containing 0-20 wt% Si as SiO2. These hydroxides or materials were characterized by 29Si NMR, XPS, TG-DSC, XRD, UV Raman, TEM, and N2 physisorption measurements. Si species uniformly distributed in the hydroxides tended to be enriched on the material surface at high temperatures. These Si species dominated by the silicates blocked the migration of Y and Zr atoms, which resisted the crystallite growth of Y2O3–ZrO2 components and reduced their crystallite size. Therefore, the SiO2–Y2O3–ZrO2 possessed a surface area of 59-112 m2/g after calcination at 950 °C for 9 h, which was significantly higher than that of the Y2O3–ZrO2 (23 m2/g). This study may stimulate ideas for developing high-surface-area crystalline ceramic materials calcined at high temperatures.  相似文献   
9.
《Ceramics International》2022,48(15):21600-21609
Stereolithography (SL) shows advantages for preparing alumina-based ceramics with complex structures. The effects of the particle size distribution, which strongly influence the sintering properties in ceramic SL, have not been systematically explored until now. Herein, the influence of the particle size distribution on SL-manufactured alumina ceramics was investigated, including bending strength at room temperature, post-sintering shrinkage, porosity, and microstructural morphology. Seven particle size distributions of alumina ceramics were studied (in μm/μm: 30/5, 20/3, 10/2, 5/2, 5/0.8, 3/0.5, and 2/0.3); a coarse:fine particle ratio of 6:4 was maintained. At the same sintering temperature, the degree of sintering was greater for finer particle sizes. The particle size distribution had a larger influence on flexural strength, porosity and shrinkage than sintering temperature when the particle size distribution difference reached 10-fold but was weaker for 10 μm/2 μm, 5 μm/2 μm and 5 μm/0.8 μm. The sintering shrinkage characteristics of cuboid samples with different particle sizes were studied. The use of coarse particles influenced the accuracy of small-scale samples. When the particle size was comparable to the sample width, such as 30 μm/5 μm and 5 mm, the width shrinkage was consistent with the height shrinkage. When the particle size was much smaller than the sample width, such as 2 μm/0.3 μm and 5 mm, the width shrinkage was consistent with the length shrinkage. The results of this study provide meaningful guidance for future research on applications of SL and precise control of alumina ceramics through particle gradation.  相似文献   
10.
Parameter estimation plays an important role in the field of system control. This article is concerned with the parameter estimation methods for multivariable systems in the state-space form. For the sake of solving the identification complexity caused by a large number of parameters in multivariable systems, we decompose the original multivariable system into some subsystems containing fewer parameters and study identification algorithms to estimate the parameters of each subsystem. By taking the maximum likelihood criterion function as the fitness function of the differential evolution algorithm, we present a maximum likelihood-based differential evolution (ML-DE) algorithm for parameter estimation. To improve the parameter estimation accuracy, we introduce the adaptive mutation factor and the adaptive crossover factor into the ML-DE algorithm and propose a maximum likelihood-based adaptive differential evolution algorithm. The simulation study indicates the efficiency of the proposed algorithms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号