排序方式: 共有70条查询结果,搜索用时 0 毫秒
1.
为了实现对无任何先验知识的高光谱遥感数据的全自动分类,提出了一种关于高光谱图像的无监督分类算法。该算法将高光谱图像的凸面几何特征与光谱特征相结合,通过自动提取端元,并利用所提取的端元进行类别识别来实现高光谱图像的自动分类。此算法的特点是原理简单、易于实现、适应性广,而且不需要任何辅助支持和人工干预。实验结果表明,该算法能够获得较好的分类效果。 相似文献
2.
在端元已知情况下,线性混合模型的非负约束最小二乘无闭式解,需要多次迭代得收敛最优解,时间复杂度高.通过高光谱数据凸面几何特性分析,指出当数据为正单形体时,可经有限步骤快速得线性混合模型最优解.据此提出一种单形体正化的高光谱数据全约束线性解混方法,据已知端元进行单形体正化,采用和为一约束求解丰度系数,最后迭代剔除丰度负值端元得全约束解.实验结果表明该方法可获得传统全约束解一致的丰度估计,且效率大大提升. 相似文献
3.
基于线性光谱混合模型的油菜种植面积遥感监测方法研究 总被引:4,自引:0,他引:4
利用中低分辨率卫星影像进行油菜面积提取时,需要考虑混合像元产生的影响,以提高面积提取的精度。本文以2009年湖北省潜江市油菜种植面积为例,利用中巴地球资源卫星(CBERS-02B)遥感影像,选取线性光谱混合模型进行油菜种植面积的分解计算研究,将结果与基于GVG(GPS、VIDEO、GIS)农情采样系统得到的结果进行对比分析,面积提取精度为97.43%。表明线性光谱混合模型能够高精度地提取油菜的种植面积,不失为一种很好的监测油菜种植面积方法。 相似文献
4.
Speed-up for N-FINDR algorithm 总被引:1,自引:0,他引:1
N-FINDR is a very popular algorithm of endmember (EM) extraction for its automated property and high efficiency. Unfortunately, innumerable volume calculation, initial random selection of EMs and blind searching for EMs lead to low speed of the algorithm and limit the applications of the algorithm. So in this paper two measures are proposed to speed up the algorithm. One of the measures is substituting distance calculation for volume calculation. Thus the avoidance of volume calculation greatly decreases the computational cost. The other measure is resorting dataset in terms of pixel purity likelihood based on pixel purity index (PPI) concept. Then, initial EMs can be selected well-founded and a fast searching for EMs is achieved. Numerical experiments show that the two measures speed up the original algorithm hundreds of times as the number of EMs is more than ten. 相似文献
5.
Integration of spatial-spectral information for the improved extraction of endmembers 总被引:4,自引:0,他引:4
Spectral-based image endmember extraction methods hinge on the ability to discriminate between pixels based on spectral characteristics alone. Endmembers with distinct spectral features (high spectral contrast) are easy to select, whereas those with minimal unique spectral information (low spectral contrast) are more problematic. Spectral contrast, however, is dependent on the endmember assemblage, such that as the assemblage changes so does the “relative” spectral contrast of each endmember to all other endmembers. It is then possible for an endmember to have low spectral contrast with respect to the full image, but have high spectral contrast within a subset of the image. The spatial-spectral endmember extraction tool (SSEE) works by analyzing a scene in parts (subsets), such that we increase the spectral contrast of low contrast endmembers, thus improving the potential for these endmembers to be selected. The SSEE method comprises three main steps: 1) application of singular value decomposition (SVD) to determine a set of basis vectors that describe most of the spectral variance for subsets of the image; 2) projection of the full image data set onto the locally defined basis vectors to determine a set of candidate endmember pixels; and, 3) imposing spatial constraints for averaging spectrally similar endmembers, allowing for separation of endmembers that are spectrally similar, but spatially independent. The SSEE method is applied to two real hyperspectral data sets to demonstrate the effects of imposing spatial constraints on the selection of endmembers. The results show that the SSEE method is an effective approach to extracting image endmembers. Specific improvements include the extraction of physically meaningful, low contrast endmembers that occupy unique image regions. 相似文献
6.
7.
端元提取是高光谱遥感图像混合像元分解的关键步骤。传统线性端元提取方法忽略了像元内地物的非线性混合因素,制约了混合像元分解精度的提升。针对高光谱图像数据的非线性结构,提出一种基于测地线距离的正交投影端元提取算法,将测地线距离引入端元单体提取过程,利用正交投影方法逐个提取端元。为了降低测地线距离计算量,在端元提取前先利用自动目标生成方法和无约束最小二乘法对原始高光谱数据进行数据约减。模拟和真实高光谱图像实验表明,该方法能够表征光谱数据中非线性因素,端元提取结果优于传统自动目标生成端元提取方法。 相似文献
8.
论文提出了一种基于快速独立分量分析的高光谱图像降维算法.利用虚拟维数算法估计需要保留的独立分量数目,采用非监督端元提取算法自动获取端元矢量,并对快速独立分量分析的混合矩阵进行有效初始化.采用最大噪声分离变换对原始数据进行预处理,利用快速独立分量分析从变换后的主分量中依次提取出各端元对应的独立分量,最后对各个独立分量分别实施无损压缩.实验结果表明,该算法降维后的独立分量具有较好的地物分类性能,并且可以获得较好的压缩性能. 相似文献
9.
遥感图像中普遍存在着混合像元,将混合像元分解为端元和它们之间混合的丰度,对于高精度的地物识别和定量遥感具有重要意义.结合自组织映射神经网络和模糊理论中的模糊隶属度,提出一种新的多光谱和高光谱遥感图像混合像元分解的方法.首先对自组织映射神经网络进行有监督的训练,然后基于模糊模型对混合像元进行分解.其分解结果自动满足混合像元分解问题所要求的2个约束:丰度值非负约束及丰度值和为1约束.实验结果表明,该方法不仅适用于线性光谱混合的情况,也适用于非线性光谱混合的情况,能够获得较好的混合像元分解结果,同时具有较强的抗噪声能力. 相似文献
10.
基于目标正交子空间投影加权的高光谱图像异常检测算法 总被引:1,自引:1,他引:1
在高光谱图像的异常目标检测问题中,针对原始数据源不能正确地表征背景数据的分布而造成虚警概率较高的现象,本文提出了一种基于目标正交子空间投影加权的KRX高光谱图像异常检测算法。该算法从背景协方差矩阵的估算角度入手,将每个像素投影到目标的正交子空间中,为每个像素自适应地赋予合适的权值,从而减小目标信息的存在对背景特性估计的影响。并用AVIRIS高光谱数据进行了仿真实验,取得了较好的检测效果。将该算法与其他算法进行了比较,结果表明,本文提出算法的检测性能明显地优于传统算法,降低了虚警概率,具有较好的检测效果。 相似文献